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Abstract
Let ζ5 be a primitive fifth root of unity and d �= 1 be a quadratic fundamental discriminant
not divisible by 5. For the 5-dual cyclic quartic field M = Q((ζ5 − ζ−1

5 )
√
d) of the quadratic

fields k1 = Q(
√
d) and k2 = Q(

√
5d) in the sense of the quintic reflection theorem, the

possibilities for the isomophism type of the Galois group G(2)
5 M = Gal(M (2)

5 /M) of the

second Hilbert 5-class field M (2)
5 of M are investigated, when the 5-class group Cl5(M) is

elementary bicyclic of rank two.Usually, themaximal unramifiedpro-5-extensionM (∞)
5 ofM

coincides with M (2)
5 already. The precise length �5M of the 5-class tower of M is determined,

when G(2)
5 M is of order less than or equal to 55. Theoretical results are underpinned by the

actual computation of all 83, respectively 93, cases in the range 0 < d < 104, respectively
−2 · 105 < d < 0.

Keywords 5-Class field tower · 5-Principalization · Quadratic fields · 5-Dual cyclic quartic
fields · Frobenius fields; finite 5-groups · Schur σ -groups

Résumé
Soient ζ5 une racine primitive 5-ième de l’unité et d �= 1 un discriminant fondamental
quadratique non divisible par 5. Pour le corps quartique cycliqueM = Q((ζ5−ζ−1

5 )
√
d), le 5-

dual des corps quadratiques k1 = Q(
√
d) et k2 = Q(

√
5d) au sens du théorème de réflexion,

les possibilités pour le type d’isomorphisme du groupe de Galois G(2)
5 M = Gal(M (2)

5 /M) du

second 5-corps de classes deHilbertM (2)
5 deM sont examinées lorsque le 5-groupe de classes

Cl5(M) est de type (5, 5). En général, la pro-5-extension maximale non ramifiée M (∞)
5 de M

coïncide avec M (2)
5 . La longueur précise �5M de la tour des 5-corps de classes de Hilbert de

M est déterminée lorsque G(2)
5 M est d’ordre inférieur ou égal à 55. Les résultats théoriques
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sont étayés par le calcul réel de tous les 83 (resp. 93) cas dans l’intervalle 0 < d < 104,
(resp. −2 · 105 < d < 0).

Mathematics Subject Classification Primary 11R37 · 11R29 · 11R11 · 11R16 · 11R20 ·
11Y40; Secondary 20D15

1 Introduction

The present article arose from the desire to generalize our results [1] for the second 3-
class group Gal(k(2)

3 /k) of the bicyclic biquadratic field k = Q(
√−3,

√
d), which is the

compositum of 3-dual quadratic fields k1 = Q(
√
d) and k2 = Q(

√−3d) in the cubic
reflection theorem, to the situation of the quintic reflection theorem.

The precise statement of both reflection theorems requires the concept of virtual units.
Let p be a prime number and K be a number field with multiplicative group K× = K\{0},
maximal order O, unit group U , fractional ideal group I, and p-class rank �p . The quotient
Vp = Ip/

(
K×)p , where

Ip = {
α ∈ K× | αO = ap for some a ∈ I

}
,

is an elementary abelian p-group of rank σp = �p + dimFp (U/U p) and is called the p-
Selmer group of non-trivial p-virtual units, that is, generators of principal pth powers of
ideals of K . We refer to σp as the p-Selmer rank of K .

1.1 Cubic reflection theorem

It is well known that the 3-Selmer ranks σ3(k1) and σ3(k2) of 3-dual quadratic fields k1 =
Q(

√
d) and k2 = Q(

√−3d) (d > 0 square-free) with respect to the quadratic cyclotomic
mirror field Q(

√−3) = Q(ζ3), ζ3 = exp(2π i/3), satisfy the cubic reflection theorem

σ3(k2) = σ3(k1) − δ, (1.1)

which is a consequence of comparing the numbers of cyclic cubic extensions of k1 and k2
which are unramified outside 3 from the viewpoint of both, class field theory and Kummer
theory. The invariant 0 ≤ δ ≤ 1 depends on the 3-virtual units of k1 and k2. More precisely,
we have

δ =
{
0, if V3(k2) (imaginary) contains a 3-virtual unit which is not 3-primary,

1, if V3(k1) (real) contains a 3-virtual unit which is not 3-primary.
(1.2)

1.2 Quintic reflection theorem

If d �= 1 denotes a square-free integer prime to 5, then the 5-Selmer ranks σ5(k1), σ5(k2) of
associated quadratic fields k1 = Q(

√
d), k2 = Q(

√
5d) and the 5-class rank �5(M) of their

5-dual cyclic quartic field M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
, ζ5 = exp(2π i/5), with respect to the

quartic cyclotomic mirror field k0 = Q(ζ5) satisfy the quintic reflection theorem

�5(M) = σ5(k1) + σ5(k2) − δ1 − δ2, (1.3)

where the invariants 0 ≤ δ1, δ2 ≤ 1 depend on the 5-virtual units of k1 and k2 [9, p. 2]. The
formula is derived by comparing the numbers of cyclic quintic extensions of k1, k2 and M
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5-Class towers of cyclic quartic fields...

which are unramified outside of 5. The maximal real subfield of k0 = Q(ζ5) is the quadratic
field k+

0 = Q(
√
5).

1.3 Overview

The layout of this article is as follows. In Sect. 2, we prove that the action of the absolute
Galois group Gal(M/Q) on the 5-class group Cl5(M) considerably reduces the possibilities
for the metabelianization G(2)

5 M of the 5-class tower group G(∞)
5 M of M . In Sect. 3, it is

shown that the six unramified cyclic quintic relative extensions Ei/M , 1 ≤ i ≤ 6, give rise
to absolute extensions Ei/Q which are either Frobenius or non-Galois. Using class number
relations for the dihedral subextensions Ei/k

+
0 of Ei/Q, we determine further constraints for

the second 5-class group G(2)
5 M , the 5-class tower group G(∞)

5 M , and the length �5M of the
5-class tower in Sect. 4. The paper concludes with tables of concrete numerical realizations
in Sect. 5 which underpin all theoretical statements and additionally reveal the statistical
distribution of possible cases.

2 p-Principalization enforced by Galois action

The generating automorphism σ of a cyclic number field F/Q of degree d with Galois
group Gal(F/Q) = 〈σ 〉 acts on the class group Cl(F) of F and thus also on the higher
p-class groups G(n)

p F with n ∈ N ∪ {∞}, for a fixed prime number p. When d and p are
coprime, a remarkable restriction of the possibilities for the metabelian second p-class group
M = G(2)

p F and consequently for the transfer kernel type κ(F) of F is due to the fact that

the trace Tσ = ∑d−1
i=0 σ i of σ annihilates the commutator quotient of all the groups G(n)

p F .

Definition 2.1 Let p be a prime number and G be a pro-p-group with finite abelianization
G/G ′. Suppose that d ≥ 2 is a fixed integer. G is said to be a σ -group of degree d , if G
possesses an automorphism σ of order d whose trace

Tσ =
d−1∑

j=0

σ j ∈ Z[Aut(G)]

annihilates G modulo G ′, that is, if there exists σ ∈ Aut(G) such that ord(σ ) = d and

xTσ =
d−1∏

j=0

σ j (x) ∈ G ′

for all x ∈ G.

We show that an epimorphism with characteristic kernel preserves the property of being
a σ -group of degree d .

Theorem 2.1 Let φ : G → H be an epimorphism of groups, whose kernel ker(φ) is charac-
teristic in G. If G is a σ -group of degree d coprime to p, then H is also a σ -group of degree
d.

Proof If G is a σ -group of degree d , then there exists an automorphism σ ∈ Aut(G) of order
ord(σ ) = d such that

xTσ =
d−1∏

i=0

σ i (x) ∈ G ′
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for all x ∈ G.According to [16, Th.6.2], there exists an induced automorphism σ̂ ∈ Aut(H)

such that σ̂ ◦ φ = φ ◦ σ . By induction we obtain σ̂ n ◦ φ = φ ◦ σ n , for all n ∈ Z: let n ≥ 2
be an integer and assume that σ̂ n−1 ◦ φ = φ ◦ σ n−1, then

σ̂ n ◦ φ = σ̂ n−1 ◦ σ̂ ◦ φ = σ̂ n−1 ◦ φ ◦ σ = φ ◦ σ n−1 ◦ σ = φ ◦ σ n .

Furthermore, (σ−1)ˆ= σ̂−1. Now let y ∈ H . Since φ is surjective, there exists x ∈ G with
φ(x) = y, and we obtain, as required,

yTσ̂ =
d−1∏

i=0

σ̂ i (y) =
d−1∏

i=0

σ̂ i (φ(x)) =
d−1∏

i=0

φ(σ i (x)) = φ

(
d−1∏

i=0

σ i (x)

)

= φ
(
xTσ

)
∈ φ(G ′) = H ′.

��
Corollary 2.1 In a descendant tree T of finite p-groups with edges π : G → πG, the
property of not being a σ -group of degree d is inherited from the parent πG by the immediate
descendant G.

Proof The parent operatorπ : G → πG is the canonical projection fromG onto the quotient
πG = G/γcG by the last non-trivial member γcG, c = cl(G), of the lower central series
(γi G)i≥1 of G, and thus π is an epimorphism with characteristic kernel ker(π) = γcG,
whence Theorem 2.1 justifies the claim. ��
Remark 2.1 A σ -group G in the classical sense is a σ -group of degree 2 in the new sense,
since xσ(x) ∈ G ′ is equivalent with σ(x)G ′ = x−1G ′. Such a group is also referred to as a
group with generator inverting automorphism or briefly GI-automorphism.

Theorem 2.2 (i) The p-class tower groupG(∞)
p F and all higher p-class groupsG(n)

p F with
n ≥ 2 of a cyclic quartic number field F are σ -groups of degree 4.

(ii) When the quadratic subfield k < F has a trivial p-class group, the groups G(∞)
p F and

G(n)
p F with n ≥ 2 are simultaneously σ -groups of degree 2.

Proof (i) The generating automorphism σ of F/Q annihilates the class group Cl(F) when
it acts by its trace Tσ = ∑3

i=0 σ i ∈ Z[〈σ 〉], since

xTσ =
3∏

i=0

σ i (x) = NF/Q(x) ∈ Cl(Q) = 1

for all x ∈ Cl(F). Of course, the same is true for all p-class groups Clp(F) with primes
p. Finally, for any n ∈ N ∪ {∞}, we have the isomorphisms

G(n)
p F/

(
G(n)

p F
)′ � Clp(F).

(ii) When the unique (real) quadratic subfield k < F has trivial p-class group Clp(k) = 1,
the relative automorphism τ = σ 2 ∈ Gal(F/k)with order 2 acts by inversion on Clp(F),
since

xTτ = x1+τ = x · τ(x) = NF/k(x) ∈ Clp(k) = 1,

and thus xτ = x−1 for all x ∈ Clp(F).
��
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Table 1 The Artin pattern of the twelve 5-groups of order 55 in the stem of �6

Identifier of the 5-group Flag 5-Principalization type

James Small group f κ Cycle pattern Property

�6(221)a 〈3125, 14〉∗ 1 (123456) (1)(2)(3)(4)(5)(6) Identity

�6(221)b1 〈3125, 11〉∗ 1 (125364) (1)(2)(3564) 4-Cycle

�6(221)b2 〈3125, 7〉 1 (126543) (1)(2)(36)(45) Two 2-Cycles

�6(221)c1 〈3125, 8〉∗ 0 (612435) (16532)(4) 5-Cycle

�6(221)c2 〈3125, 13〉∗ 0 (612435) (16532)(4) 5-Cycle

�6(221)d0 〈3125, 10〉 0 (214365) (12)(34)(56) Three 2-Cycles

�6(221)d1 〈3125, 12〉∗ 0 (512643) (154632) 6-Cycle

�6(221)d2 〈3125, 9〉∗ 0 (312564) (132)(456) Two 3-Cycles

�6(213)a 〈3125, 4〉 1 (022222) nrl. const. with fp.

�6(213)b1 〈3125, 5〉 1 (011111) Nearly constant

�6(213)b2 〈3125, 6〉 1 (011111) Nearly constant

�6(15) 〈3125, 3〉 1 (000000) Constant

Remark 2.2 A pro-p-group G with finite abelianization G/G ′ is called a strong σ -group if it
possesses an automorphism σ of order 2 which acts as inversion on both cohomology groups
H1(G, Fp) and H2(G, Fp). We emphasize the following two facts:

• An epimorphism does not necessarily preserve the property of being a strong σ -group.
• Whereas the groupG(∞)

p F of a quadratic field F is a strong σ -group, according to Schoof
[19, Lem. 4.1, p. 217], this is not necessarily the case for a cyclic quartic field F . See for
instance the unusual cases in Theorem 4.5.

In view of our special situation with p = 5, F = M , Cl5(M) = (5, 5) and k = k+
0 ,

we tested finite metabelian 5-groups G with G/G ′ � (5, 5) of order |G| = 3125 = 55

and coclass cc(G) = 2, for the property of simultaneously being a σ -group of degree 4 and
degree 2. These groups are crucial contestants for second 5-class groups G(2)

5 M and form
the stem of Hall’s isoclinism family �6. (See [13, §3.5, pp. 445–448] and [17, Sect.7, pp.
93–98].) In Table 1, the groups are characterized by their identifiers according to James [8]
and the SmallGroups Library [2]. An asterisk ∗marks a Schur σ -group, and a flag f ∈ {0, 1}
indicates a σ -group of simultaneous degrees 4 and 2.

Theorem 2.3 A finite 5-group G with G/G ′ � (5, 5) which is a σ -group of degree 4 is
either of coclass cc(G) = 1 or isomorphic to one of the two Schur σ -groups 〈3125, i〉 with
i ∈ {11, 14} or isomorphic to a descendant of one of the capable groups 〈3125, i〉 with
i ∈ {3, 4, 5, 6, 7}.
Proof Using permutation representations, we compiled a program script in Magma [12] for
testing whether an assigned 5-group G with G/G ′ � (5, 5) is a σ -group of degree 4. ��
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Fig. 1 Galois correspondence between Gal(k0/Q)and k0

Fig. 2 Galois correspondence between Land Gal(L/Q)

3 Frobenius and non-Galois unramified 5-extensions

3.1 On the cyclic quartic fieldsM

Let ζ5 be a primitive 5th root of unity, then the irreducible polynomial of ζ5 is given by
IrrQ(ζ5) = X4 + X3 + X2 + X + 1, and Gal(Q(ζ5)/Q) = 〈μ〉 is a cyclic group of order
4 which admits one subgroup 〈μ2〉 of order 2. By Galois correspondence, this subgroup
corresponds to Q(ζ5)

+ = Q(ζ5 + ζ−1
5 ) = Q(

√
5). (See Fig. 1.)

Let d be a square-free integer prime to 5. Then L = Q(
√
d, ζ5) is a normal extension over

Q of degree 8, and the Galois group is

Gal (L/Q) = 〈τ, μ〉 = {1, τ, μ,μ2, μ3, τμ, τμ2, τμ3}, where τ(
√
d) = −√

d.

This is an abelian group of type (2, 4) which has six proper subgroups ordered as follows:

H1 = 〈τ 〉, H2 = 〈μ〉, H3 = 〈μ2〉, H4 = 〈τμ〉, H5 = 〈τμ2〉 and H6 = 〈τ, μ2〉.

Note that the subgroups H1, H3, H5 are cyclic of order 2, the subgroups H2, H4 are cyclic
of order 4, and the group H6 is bicyclic of order 4. (See Fig. 2.)
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5-Class towers of cyclic quartic fields...

We consider the field M fixed by the subgroup 〈τμ2〉. Then M is a cyclic quartic field and
can be generated by adjunction M = Q(α) of

α = (ζ5 − ζ−1
5 )

√
d =

√

−5d

2
− d

2

√
5

to Q. With respect to the quartic cyclotomic mirror field k0 = Q(ζ5), M satisfies the quintic
reflection theorem (Eq. (1.3)).

Lemma 3.1 (i) Let K be a number field and F/K be a cyclic quartic extension. Then there
exist n, e and f �= 0 in K such that

(1) n is not a square in K ,
(2) n(e2 − f 2n) is a square in K ,
(3) F = K (α), where α = √

e + f
√
n,

and the minimal polynomial of α over K is given by IrrK (α) = X4−2eX2+(e2− f 2n).

(ii) Conversely, if there exist numbers n, e and f �= 0 in K which satisfy the conditions
(1), (2) and (3), then F/K is a cyclic quartic extension and the polynomial P(X) =
X4 − 2eX2 + (e2 − f 2n) is irreducible over K . In fact, F is the splitting field of P(X).

Proof (i) It is known that the groupZ/4Z has a single subgroup of order 2. ByGalois theory,
there exists a corresponding intermediary field R of the cyclic quartic extension F/K .
Thus we can find n ∈ K , which is not a square in K , such that R = K (

√
n). Since F is a

quadratic extension of R, there exists α ∈ F such that α2 = e+ f
√
n ∈ R with e, f ∈ K ,

f �= 0, and F = R(α). Thus we have K (α) = F , because α /∈ R. Furthermore, it is
obvious that the minimal polynomial of α is P(X) = X4 − 2eX2 + (e2 − f 2n) and the
splitting field of P(X) over Q is F .
The discriminant of P is given by

D = 16(e2 − f 2n)(2 f
√
n)4 = 28 f 4n2(e2 − f 2n).

Therefore the Galois group Gal (F/K ) can be seen as a subgroup of the permutation
group of the roots of P(X), which is isomorphic to S4, and cannot be injected into A4,
since the group A4 does not have a cyclic subgroup of order 4. We conclude that the

discriminant is not a square in K , whence K
(√

e2 − f 2n
)

/K is of degree 2 and is

contained in F . It follows that

R = K
(√

n
) = K

(√
e2 − f 2n

)
,

so e2− f 2n
n is a square in K . Consequently, we see that n

(
e2 − f 2n

) = n2 e
2− f 2n
n is a

square in K .
(ii) Conversely, let

P(X) = X4 − 2eX2 + (e2 − f 2n)

with n, e, f ∈ K , f �= 0, such that the conditions (1), (2) and (3) are satisfied. Since
α is a root of P(X), the degree [F : K ] must be a divisor of 4. Since K

(√
n
) ⊆ F , we

have either F = K
(√

n
)
or [F : K ] = 4. If we have F = K

(√
n
)
, there exist u, v ∈ K

such that
√
e + f

√
n = u + v

√
n. Thus

e2 − f 2n = (
u2 − v2n

)2
,
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and by (2)we conclude that n is a square in K , which is a contradiction. So [F : K ] = 4,
and this enforces that P(X) is the minimal polynomial of α. From the fact

e − f
√
n =

(
1√
n

)2 n(e2 − f 2n)

α2 ,

we conclude that F is the splitting field of P(X) over K . Moreover, F is normal and
#Gal (F/K ) = 4. Now we prove that Gal (F/K ) is cyclic of order 4. If the Galois group
Gal (F/K ) were isomorphic to V4, then the discriminant would be a square in K . This
would imply that n were a square in K , which is a contradiction.

��
Corollary 3.1 Let d be a square-free integer prime to 5 and ζ5 be a primitive 5th root of
unity. Then the mirror image M of k1 = Q(

√
d) can always be generated by adjoining the

algebraic number

α = (ζ5 − ζ−1
5 )

√
d =

√−5d

2
+ −d

2

√
5

to the rational, whence M is complex for d > 0 and M is real for d < 0. For the construction
of M one can therefore use the minimal polynomial of α over Q, which is given by

IrrQ(α) = X4 + 5dX2 + 5d2. (3.1)

Remark 3.1 The conductor c(M) and the discriminant d(M) of M are given by

c(M) =
{
20d if d ≡ 2, 3 (mod 4),

5d if d ≡ 1 (mod 4),
(3.2)

d(M) = c(M)2d(k+
0 ) =

{
2000d2 if d ≡ 2, 3 (mod 4),

125d2 if d ≡ 1 (mod 4),
(3.3)

where d(k+
0 ) = 5 is the discriminant of the quadratic subfield k+

0 = Q(
√
5) of M . (See

[5,21].)

3.2 Imaginary cyclic quartic fieldsMwith d > 0

In the following, the two Frobenius groups F5,w of order 20 with primitive root w ∈ {2, 3}
modulo 5 will be denoted by

{
F5,2 = 〈 σ, ι | σ 5 = 1, ι4 = 1, ι−1σ ι = σ 2 〉,
F5,3 = 〈 σ, ι | σ 5 = 1, ι4 = 1, ι−1σ ι = σ 3 〉, (3.4)

where ι|M = μ|M .

Proposition 3.1 Let E1, . . . , E6 be the six unramified cyclic quintic extensions of the imag-

inary cyclic quartic field M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
, d > 0, with 5-class group Cl5(M) �

C5 × C5 or, more generally, of 5-class rank 2. The properties of these fields as absolute
extensions Ei/Q, in dependence on the eight cases in Table 2, are given as follows:

(1) In cases (a) and (g), all six fields E1, . . . , E6 are normal and share isomorphic auto-
morphism groups Gal(Ei/Q) � F5,2 for i = 1, . . . , 6.
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Table 2 All possible 5-class
ranks r1 := �5(k1), r2 := �5(k2)
and invariants δ1, δ2 for the
associated quadratic fields
k1, k2 which are 5-dual to an
imaginary cyclic quartic field
M = Q((ζ5 − ζ−1

5 )
√
d), d > 0,

with 5-class rank
r := �5(M) = 2

Case r1 δ1 r2 δ2

(a) 1 0 0 1

(b) 0 1 1 0

(c) 1 1 1 1

(d) 0 0 0 0

(e) 1 1 0 0

(f) 0 0 1 1

(g) 2 1 0 1

(h) 0 1 2 1

(2) In cases (b) and (h), all six fields E1, . . . , E6 are normal and share isomorphic auto-
morphism groups Gal(Ei/Q) � F5,3 for i = 1, . . . , 6.

(3) In all the other cases (c), (d), (e), (f), two extensions are normal with non-isomorphic
automorphism groups, say

Gal(E1/Q) � F5,2 and Gal(E2/Q) � F5,3,

but the other four extensions are non-Galois and form two conjugate pairs E3 � E4 and
E5 � E6.

Proof According to the quintic reflection theorem [9], the assumption r = 2 implies that one
of the eight disjoint cases in Table 2 is satisfied.

In case (a), the 5-Selmer group of k1 is given by V5(k1) = 〈α11, ε1〉. See [9, p. 2, l. 3].
Let

E1 := SplQ f (X , α11) and E2 := SplQ f (X , ε1).

In virtue of δ1 = 0, E1 and E2 are unramified cyclic quintic extensions of M . According to
[9, p. 17, l. 9–23], Gal(Ei/Q) � F5,2, for 1 ≤ i ≤ 2. Let L := E1 · E2 be the compositum.
Then, by [9, Lem. 2.5], all proper subextensions E of L/M have Gal(E/Q) � F5,2.

In case (b), the 5-Selmer group of k2 is given by V5(k2) = 〈α21, ε2〉. See [9, p. 2, l. 3].
Let E1 := SplQ f (X , α21) and E2 := SplQ f (X , ε2). In virtue of δ2 = 0, E1 and E2 are
unramified cyclic quintic extensions ofM .According to [9, p. 17, l. 9–23],Gal(Ei/Q) � F5,3,
for 1 ≤ i ≤ 2. Let L := E1 · E2 be the compositum. Then, by [9, Lem. 2.5], all proper
subextensions E of L/M have Gal(E/Q) � F5,3.

Exemplarily, we consider case (d). Then the 5-Selmer groups of k1 and k2 are given by
V5(k1) = 〈ε1〉, V5(k2) = 〈ε2〉. Let

E1 := SplQ f (X , ε1) and E2 := SplQ f (X , ε2).

Then, in virtue of δ1 = δ2 = 0, E1 and E2 are unramified cyclic quintic extensions of M .
According to [9, p. 17, l. 9–23],

Gal(E1/Q) � F5,2 and Gal(E2/Q) � F5,3.

Let L := E1·E2 be the compositum.Then E/M is also anunramified cyclic quintic extension,
for any proper subextension E of L/M distinct from E1 and E2. Assume that Gal(E/Q) �
F5,2. Since L = E1 · E , all proper subextensions E ′ of L/M have Gal(E ′/Q) � F5,2,
by [9, Lem. 2.5]. This is a contradiction to Gal(E2/Q) � F5,3. In the same manner, the
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assumption that Gal(E/Q) � F5,3 leads to a contradiction. Therefore E/Q must be a non-
Galois extension. ��

3.3 Infinite family of imaginary cyclic quartic fieldsMwhose 5-rank is at least 2

As before, let d �= 1 be a square-free integer prime to 5, and let k1 = Q(
√
d) and k2 =

Q(
√
5d) be the associated quadratic fields. For γ ∈ k = ki , i ∈ {1, 2}, Kishi [9, p. 6] has

defined the polynomial

f (X , γ ) = X5 − 5Nk(γ )X3 + 5Nk(γ )2X − Nk(γ )2Trk(γ ),

where Nk,Trk are the norm map and the trace map of k/Q. The minimal splitting field of
f (X , γ ) is noted by Kγ . Furthermore, Imaoka and Kishi [7], have characterized all F5,w-
extensions with w ∈ {2, 3} as Kγ for a suitable elements γ ∈ ki with i ∈ {1, 2}. If γ ∈ k1,
then Gal

(
Kγ /Q

) � F5,2, and if γ ∈ k2, then Gal
(
Kγ /Q

) � F5,3. Now, we consider the real
quadratic fields k1 = Q(

√
d) and k2 = Q(

√
5d), d = (α + β)2 − 4, given by Kishi in [10,

Ex. 3.5, p. 489] for p = 5, where the pair of integers (α, β) ∈ N×N such that α ≥ 2, β ≥ 2
satisfies the simultaneous conditions

{
α2 − 53β2 = 4,

α + β ≡ 0 (mod 52).
(3.5)

Remark 3.2 The Pellian equation α2 − 53β2 = 4 has infinitely many solutions (α, β), which

correspond to the powers ηn = α+β
√
53

2 of the normpositive fundamental unit

η = 123 + 11
√
53

2
= 123 + 11 · 5√5

2

of the suborder with conductor f = 5 of Q(
√
5). The solution (α, β) satisfies the additional

constraint α + β ≡ 0 mod 52 in (3.5) if and only if n = 7 + 52k with an integer k ≥ 0.

Proposition 3.2 Let

M = Q

(
(ζ5 − ζ−1

5 )

√
(α + β)2 − 4

)
,

where α, β satisfy the conditions (3.5). Then the 5-rank of the class group of M is greater
than or equal to 2.

Proof Let

ε1 = α + β + √
d

2
, resp. ε2 = α + 53β + 5

√
5d

2
,

be an element of

k1 = Q

(√
(α + β)2 − 4

)
, resp. k2 = Q

(√
5((α + β)2 − 4)

)
.

According to [10, Ex.3.5, p. 489], ε1 and ε2 are units of k1 and k2, respectively. They satisfy
the conditions {

N
Q(

√
d)

(
ε21

) = N
Q(

√
5d) (ε2) = 1,

Tr
Q(

√
d)

(
ε21

) ≡ Tr
Q(

√
5d) (ε2) ≡ ±2 (mod 53).

(3.6)
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By applying [10, Th.1.1, p. 482, Prop. 3.1, p. 487],we prove that Kε21
and Kε2 are two different

absolute Galois F5-extensions, unramified overM ; it suffices to show that ε21 , resp. ε2, cannot
be the fifth power of an element of k1, resp. k2.

According to [18, Lem. 1, p. 16 ], we have the following general fact: Let p be a prime

number and ξ be an element of Q(
√

δ) such that ξ = u+v
√

δ
2 . If 0 < |v| < δ(p−1)/2

2p−1 , then

ξ /∈ Q(
√

δ)p.

Let us apply this result to ε2 and ε21 . By the assumptions (3.5), α + β = 52c, for some
c ≥ 1. Hence (α + β)2 = 54c2 and 5(α + β)2 = 55c2. Furthermore, 55c2 ≥ 55 > 36 and
thus 5(α + β)2 − 20 > 16, whence

5d > 16, (5d)2 > 162 and
(5d)2

16
> 16.

Finally 5 < 16 <
(5d)2

24
, and if we put v := 5 and δ := 5d , then v < δ2

24
, whence ε2 cannot

be the fifth power of an element in k2.
For ε21 , we express the square in the form

ε21 =
(α+β)2+d

2 + (α + β)
√
d

2
.

Moreover we have,

α + β <
d2

16
⇐⇒ 16(α + β) < (α + β)4 − 8(α + β)2 + 16.

Put u := α + β. Then

α + β <
d2

16
⇐⇒ u4 − 8u2 − 16u + 16 > 0.

Since α ≥ 2 and β ≥ 2, it follows that u ≥ 3, whence φ(u) = u4 − 8u2 − 16u + 16 is
positive. Thus we get α + β < d2

24
, and putting v := α + β and δ := d we conclude that ε21

cannot be a fifth power in k1 either. ��
Corollary 3.2 Let

M = Q

(
(ζ5 − ζ−1

5 )

√
(α + β)2 − 4

)
,

where the integers α, β satisfy the conditions (3.5). Let ϕ denote the generator of

Gal
(
Q(

√
5)/Q

)
. Assume that the 5-class groupCl5(M) of M is of type (5, 5). Then M (1)

5 /M

contains six unramified cyclic quintic extensions Ei/M,which give rise to absolute extensions
of degree 20 over Q, ordered the following way:

• E1 = Kε21
of Type (I) with Gal(E1/Q) � F5,2, the splitting field of the polynomial

f (X , ε21) = X5 − 5X3 + 5X − (d + 2);
• E2 = Kε2 of Type (II) with Gal(E2/Q) � F5,3, the splitting field of the polynomial

f (X , ε2) = X5 − 5X3 + 5X − (α + 53β);
• the other four extensions E3, E4 = Eϕ

3 , E5, E6 = Eϕ
5 , which are non-Galois of Type

(III) over Q and form two conjugate pairs.

Proof The claims are a consequence of Proposition 3.2, the formulas of (3.6) and the fact
that Tr

Q(
√
d)

(
ε21

) = d + 2 and Tr
Q(

√
5d) (ε2) = α + 53β. ��
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Table 3 Some possible 5-class
ranks r1 := �5(k1), r2 := �5(k2)
and invariants δ1, δ2 for the
associated quadratic fields
k1, k2 which are 5-dual to a real
cyclic quartic field
M = Q((ζ5 − ζ−1

5 )
√
d),

d < 0,with 5-class rank
r := �5(M) = 2

Case r1 δ1 r2 δ2

(a) 2 0 0 0

(b) 0 0 2 0

(c) 1 0 1 0

(d) 2 1 1 0

(e) 1 0 2 1

Remark 3.3 For d > 0, if the fundamental units of the real quadratic fields ki , i = 1, 2, are
5-primary, then the field M has a non-Galois unramified cyclic quintic extension of Type (III)
[9]. In this case, there are four pairwise conjugate extensions of Type (III), and among the
remaining two Frobenius extensions one is of Type (I) and one is of Type (II) [9]. Note that
in the case d > 0 the cyclic quartic field M is imaginary. Also, if 5 divides the class number
of ki , i = 1, 2, there exists at most one 5-primary element of ki , i = 1, 2, which gives rise to
the Frobenius extensions of Type (I) and Type (II).

3.4 Real cyclic quartic fieldsMwith d < 0

As before, the two Frobenius groups F5,w of order 20 with primitive root w ∈ {2, 3} modulo
5 will be denoted as in formula (3.4).

Proposition 3.3 Let E1, . . . , E6 be the six unramified cyclic quintic extensions of the real

cyclic quartic field M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
, d < 0, with 5-class group Cl5(M) � C5 ×C5

or, more generally, of 5-class rank 2. The properties of these fields as absolute extensions
Ei/Q, in dependence on the five cases in Table 3, are given as follows:

(1) In case (a), all six fields E1, . . . , E6 are normal and share isomorphic automorphism
groups Gal(Ei/Q) � F5,2, for 1 ≤ i ≤ 6.

(2) In case (b), all six fields E1, . . . , E6 are normal and share isomorphic automorphism
groups Gal(Ei/Q) � F5,3, for 1 ≤ i ≤ 6.

(3) In all the other cases (c), (d), (e), two extensions are normal with non-isomorphic
automorphism groups, say Gal(E1/Q) � F5,2 and Gal(E2/Q) � F5,3, but the other
four extensions are non-Galois and form two conjugate pairs E3 � E4 and E5 � E6.

Proof Similar to the proof of Proposition 3.1. ��

4 The second 5-class group G(2)
5 M ofM

Based on the class number formula [11] for dihedral relative extensions E of degree 10
over a base field F with class number coprime to 5, we are now in a position to determine
the isomorphism type of the Galois group G(2)

5 M = Gal(M (2)
5 /M) of the second Hilbert

5-class field M (2)
5 of a cyclic quartic field M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with 5-class group of

type (5, 5), because its unramified cyclic quintic extensions Ei , 1 ≤ i ≤ 6, turn out to be
relatively dihedral over the quadratic subfield k+

0 = Q(
√
5) of M , which has class number

1.
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Theorem 4.1 The relation between the 5-class numbers h5(Ei ) of the six unramified cyclic
quintic extensions Ei , 1 ≤ i ≤ 6, of M and the 5-class numbers h5(Li ) of their non-Galois
subfields Li , which are of relative degree 5 over the field k+

0 = Q(
√
5), is given by

h5(Ei ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h5(Li )
2 if # ker( jEi /M ) = 25, (Uk+

0
: NLi /k

+
0
(ULi )) = 1,

5 · h5(Li )
2 if # ker( jEi /M ) = 25, (Uk+

0
: NLi /k

+
0
(ULi )) = 5,

5 · h5(Li )
2 if # ker( jEi /M ) = 5, (Uk+

0
: NLi /k

+
0
(ULi )) = 1,

25 · h5(Li )
2 if # ker( jEi /M ) = 5, (Uk+

0
: NLi /k

+
0
(ULi )) = 5,

(4.1)

where UF denotes the unit group of a field F.

Proof According to Lemmermeyer [11, eq. (5.2), p. 685], we have the class number relation

h5(Ei ) =
(Uk+

0
: NLi /k

+
0
(ULi ))

# ker( jEi /M )
· h5(M) · h5(Li )

2,

where h5(M) = 25, due to our general assumption on M . Distinction between total princi-
palization, # ker( jEi /M ) = 25, and partial principalization, # ker( jEi /M ) = 5, immediately
yields the four claimed cases, in dependence on the unit norm indices ui := (Uk+

0
:

NLi /k
+
0
(ULi )). ��

Remark 4.1 In order to prove Theorem 4.1 in a different manner, we can use the class number
formula, due to Lemmermeyer [11, Th.2.4, p. 681], and the following Lemma 4.1.

Lemma 4.1 Let p be an odd prime and let F be a number field with class number coprime
to p. Let k be a quadratic extension of F. Assume that L is an unramified cyclic extension
of k of degree p. Then the extension L/F is Galois, dihedral of degree 2p, and we have the
formula

a := (UL : UKUK ′Uk) =
(
Uk : U p

k

) (
UF : NK/F (UK )

)

(
UF : U p

F

) (
Uk : NL/k(UL)

)

for the subfield unit index a, where K �= K ′ denote two conjugate non-Galois subfields of L.

Since p ≥ 3 is an odd prime and the existence of an unramified cyclic extension L/k of
degree p excludes the irregular case p = 3, F = Q, k = Q(

√−3) with hk = 1, either both
fields k and F contain the pth roots of unity or both not. Therefore,

(
Uk : U p

k

)

(
UF : U p

F

) = pr(k)−r(F)

with the torsion-free Dirichlet unit ranks r(k) of k and r(F) of F . For an unramified extension
L/k, the Theorem on the Herbrand quotient of UL is equivalent with # ker( jL/k) = p · b
with b := (

Uk : NL/k(UL)
)
. Using Lemma 4.1, which can be found in [11, p. 686], we can

express the factor on the right hand side of the class number relation [11, Th.2.4, p. 681],

hp(L) = a

p1+r(k)−r(F)
· hp(k) · hp(K )2,

in the form

a

p1+r(k)−r(F)
= a · (

UF : U p
F

)

p · (
Uk : U p

k

) =
(
UF : NK/F (UK )

)

# ker( jL/k)
,

123

Author's personal copy



A. Azizi et al.

which we have used for p = 5, F = k+
0 , k = M , L = Ei , K = Li in the proof of

Theorem 4.1.

4.1 Imaginary cyclic quartic fieldsMwith d > 0

Theorem 4.2 The 5-class field tower of M has length �5M = 1 if and only if the second
5-class group G(2)

5 M of M is the abelian 5-group 〈25, 2〉 of type (5, 5). In this case,

(1) the 5-class groups Cl5(Ei ) are cyclic of order 5, for 1 ≤ i ≤ 6,
(2) the 5-class groups Cl5(Li ) are trivial, for 1 ≤ i ≤ 6,
(3) the 5-principalization of M is of type a.1, κ(M) = (000000).

Proof For G(2)
5 M � 〈25, 2〉, we have the cyclic 5-class groups Cl5(Ei ) � C5 and six total

principalizations # ker( jEi /M ) = 25. According to Theorem 4.1, we obtain h5(Ei ) = 5 =
ui · h5(Li )

2, which enforces h5(Li ) = 1 and ui = 5, for all 1 ≤ i ≤ 6. ��
Example 4.1 The values d = 4357 and d = 4444 give rise to fields M = Q

(
(ζ5 − ζ−1

5 )
√
d
)

with 5-class group of type (5, 5) having a single-stage 5-class tower. Fields of this type are
extremely rare, since they form a fraction of 2

83 among the fields with 0 < d < 10000.
Therefore, only about 2% of the cases possess a single-stage tower.

Proposition 4.1 Let M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
, with d > 0, be an imaginary cyclic quartic

field with 5-class group of type (5, 5). Let Ei , 1 ≤ i ≤ 6, be the six unramified cyclic
quintic extensions of M and Li their non-Galois subfields of relative degree 5 over the field
k+
0 = Q(

√
5). Then the following holds true for each 1 ≤ i ≤ 6:

(1) the subfield unit indices ai :=
(
UEi : ULiUL ′

i
UM

)
are equal to 1,

(2) the unit norm indices ui satisfy the equivalence ui = 1 ⇐⇒ # ker( jEi /M ) = 5,
(3) the relations between the 5-class numbers h5(Ei ) and h5(Li ) are given by

h5(Ei ) = 5 · h5(Li )
2.

Proof According to Lemma 4.1, we can deduce that

aibi =
(
UM : U 5

M

) (
Uk+

0
: NLi /k

+
0
(ULi )

)

(
Uk+

0
: U 5

k+
0

) ,

where bi denotes the unit norm index
(
UM : NEi /M (UEi )

)
. Since d > 0, the field M is

imaginary and it is a CM-field with maximal real subfield M+ = k+
0 . Hence, the torsion-free

Dirichlet unit rank ofM is r(M) = 1, andUM = 〈−1, ε5〉, where ε5 denotes the fundamental
unit of the quadratic field k+

0 = Q(
√
5). This implies that

(
UM : U 5

M

)
=

(
Uk+

0
: U 5

k+
0

)
and aibi = ui .

(1) To prove the first assertion, it suffices to show the following equivalence:

ui = 1 if and only if bi = 1.

So it suffices to show that the fundamental unit ε5 of k
+
0 , which is also the fundamental

unit of M , is the norm of a unit of Ei if and only if it is the norm of a unit of Li . If ui = 1,
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for i ∈ {1, . . . , 6}, then ε5 is the norm of a unit of Li (a non-Galois subfield of Ei ), hence
it is also the norm of the same unit in Ei , and bi = 1.
Now suppose that bi = 1, for 1 ≤ i ≤ 6. Then there exists a unit ξ ∈ UEi such that
ε5 = NEi /M (ξ), and we obtain the following chain of implications:

NM/Q(
√
5)(ε5) = NM/Q(

√
5)

(
NEi /M (ξ)

)

⇒ ε25 = NM/Q(
√
5)

(
NEi /M (ξ)

) = NLi /Q(
√
5)

(
NEi /Li (ξ)

)

⇒ ε65 = NLi /Q(
√
5)

(
NEi /Li (ξ

3)
)

⇒ ε5 · NLi /Q(
√
5)(ε5) = NLi /Q(

√
5)

(
NEi /Li (ξ

3)
)
,

whence

ε5 = NLi /Q(
√
5)

(
ε−1
5 · NEi /Li (ξ

3)
)

.

Since the element ε−1
5 · NEi /Li (ξ

3) is a unit of Li , we obtain the index ui = 1. On the
other hand, the possible values of bi and ui are {1, 5}, and we can deduce that ui = bi .
Finally, it follows from the equation aibi = ui that ai = 1.

(2) The result follows immediately from the fact that # ker( jEi /M ) = 5 · bi .
(3) According to Theorem 4.1, we have two possible cases,

ui = 1 and # ker jEi /M = 5,

and

ui = 5 and # ker jEi /M = 25.

In both cases, the class number formula is given by h5(Ei ) = 5 · h5(Li )
2.

��
Theorem 4.3 Let M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with d > 0 be an imaginary cyclic quartic field

with 5-class group Cl5(M) � C5 × C5. If the second 5-class group G := G(2)
5 M of M is

non-abelian, then the coclass cc(G) of G is greater than or equal to 2, cc(G) ≥ 2.

Proof Assume that G is non-abelian of coclass cc(G) = 1. Then the possible capitulation
types of M in the six intermediary cyclic quintic extensions of M (2)

5 /M , noted by

E1, E2, E3, E4 = Eϕ
3 , E5, E6 = Eϕ

5 ,

are given by κ(G) = (111111) or κ(G) = (�00000), � ∈ {0, 1, 2}.
First we consider the type κ(G) = (111111). In this case, the group G is the extra special

5-group of order 53 and exponent 52, whose maximal normal subgroups are of order 52. This
implies that the 5-class number of each Ei is equal to 52. Using Proposition 4.1, however,
we conclude that the valuation v5(h5(Ei )) of the 5-class number of Ei must be odd, which
is a contradiction. Thus the type κ(G) = (111111) cannot occur.

For the three other types, we have total capitulation in the five extensions

E2, E3, E4 = Eϕ
3 , E5, E6 = Eϕ

5 ,

so the value of the index bi , 2 ≤ i ≤ 6, is bi = 5, whence ui = 5. On the other hand, for
2 ≤ i ≤ 6 we again have h5(Ei ) = 52, which is a contradiction, since by Proposition 4.1,
the valuation v5(h5(Ei )) must be odd. ��
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Proposition 4.2 (Number of fields) In the range 0 < d < 10000 of fundamental discrim-
inants d of real quadratic fields k1 = Q(

√
d) with gcd(5, d) = 1, there exist precisely 83

cases such that the 5-dual field M = Q((ζ5 − ζ−1
5 )

√
d) of k1 has a 5-class group Cl5(M) of

type (5, 5).

Proof See Tables 4 and 5. ��
Theorem 4.4 (Two-stage towers of 5-class fields with Schur σ -groups)

(1) If the 5-dual field M of k1 has 5-principalization type κ(M) = (125643) with two
fixed points and a 4-cycle, then the abelian type invariants of E1, . . . , E6 are τ(M) =
[(13)2, (21)4], and the 5-class tower group is the Schur σ -group G(∞)

5 M = G(2)
5 M �

〈55, 11〉.
(2) If the 5-dual field M of k1 has 5-principalization type κ(M) = (123456), the identity

permutation, then the abelian type invariants of E1, . . . , E6 are τ(M) = [(13)6], and
the 5-class tower group is the Schur σ -group G(∞)

5 M = G(2)
5 M � 〈55, 14〉.

Proof In each case, the length of the 5-class tower of M is given by �5M = 2, since G :=
G(2)
5 M is a Schur σ -group with balanced presentation, i.e., relation rank d2(G) = d1(G) =

�5(M) = 2. ��
Examples for part (1) are the 23 (about 28%) real quadratic fields k1 starting with the

following discriminants:

d ∈ {457, 501, 1996, 2573, 3253, 4189, 4957, 5129, 5233, 5308, 5361, . . .}.
Examples for part (2) are the 11 (about 13%) real quadratic fields k1 with the following
discriminants:

d ∈ {581, 753, 2296, 2829, 4553, 5116, 5736, 6761, 7489, 9013, 9829},
verifying a conjecture by O. Taussky in [22], and announced in [13, Sect. 3.5.2, p. 448],
except 2829.

Remark 4.2 The pairs of conjugate non-Galois extensions E3 � E4 and E5 � E6 of M are
not adjacent in the factor (3546) of the cycle pattern (1)(2)(3546) of the 4-cycle κ(M) =
(125643), and the Frobenius extensions E1, E2 correspond to the fixed points (1), (2). The
identity κ(M) = (123456), which does not have two distinguished fixed points a priori, is
endowed with a random arithmetical bipolarization by the two Frobenius extensions E1, E2.

Theorem 4.5 (Two-stage towers of 5-class fields with unusual capable weak σ -groups)

(1) If the 5-dual field M of k1 has 5-principalization typeκ(M) = (022222), nearly constant
with a single total capitulation and a single fixed point, then the abelian type invariants
of E1, . . . , E6 are τ(M) = [(13)2, (21)4], and the 5-tower group isG(∞)

5 M = G(2)
5 M �

〈55, 4〉.
(2) If the 5-dual field M of k1 has 5-principalization type κ(M) = (124365) with two

fixed points and two disjoint 2-cycles, then the abelian type invariants of E1, . . . , E6 are
τ(M) = [(13)2, (21)4], and the 5-class tower group is G(∞)

5 M = G(2)
5 M � 〈55, 7〉.

Proof In each case, the length of the 5-class tower of M is given by �5M = 2, since G :=
G(2)
5 M is a metabelian σ -group with trivial cover [15, Def. 5.1, p. 30], according to Heider

and Schmithals [6, p. 20]. The presentation of G is not balanced, since the relation rank
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d2(G) = 3 is too big. However, the Shafarevich Theorem [20], in its corrected version [15,
Th.5.1, p. 28], ensures that d2(G) ≤ d1(G) + r = 3, (it just reaches the admissible upper
bound), since the generator rank of G and the torsion-free Dirichlet unit rank of M with
signature (0, 2) are given by d1(G) = �5(M) = 2 and r = 0 + 2 − 1 = 1. The 5-tower
groups 〈55, 4〉 and 〈55, 7〉 are unusual, because they are not strong σ -groups and thus are
forbidden for (imaginary and real) quadratic base fields [19]. ��

Examples for part (1) are the 22 (about 27%) real quadratic fields k1 starting with the
following discriminants:

d ∈ {257, 764, 1708, 1853, 2008, 2189, 3129, 4504, 4861, 5241, 5269, . . .}.
Examples for part (2) are the16 (about19%) real quadratic fields k1 startingwith the following
discriminants:

d ∈ {508, 509, 629, 881, 1113, 1192, 1704, 1829, 3121, 4461, 7032, . . .}.
Remark 4.3 The pairs of conjugate non-Galois extensions E3 � E4 and E5 � E6 of M
correspond to the factors (34) and (56) of the cycle pattern (1)(2)(34)(56) of the two disjoint
2-cycles κ(M) = (124365), and the Frobenius extensions E1, E2 correspond to the fixed
points (1), (2). For the nearly constant type κ(M) = (022222), the first (resp. second)
Frobenius extension E1 (resp. E2) corresponds to the single total capitulation (resp. the
single fixed point).

Figure 3 visualizes the situation of a two-stage 5-class tower in the Theorems 4.4, 4.5, 4.9.

Theorem 4.6 (Single-stage towers of 5-class fields with abelian group) For the 2 (about
2%) real quadratic fields k1 with discriminants d ∈ {4357, 4444}, the 5-dual field M of
k1 has 5-principalization type κ(M) = (000000), a constant with six total capitulations;
the abelian type invariants of E1, . . . , E6 are τ(M) = [(1)6], and thus the 5-class tower is
abelian with group G(∞)

5 M = G(1)
5 M � 〈52, 2〉 and length �5M = 1.

Proof Here, the 5-class tower is abelian with length �5M = 1, according to Theorem 4.2. ��
Remark 4.4 Outside the range 0 < d < 104 of our systematic investigations, we have
discovered three occurrences of case (g) in Table 2. For the real quadratic fields k1 with dis-
criminants d ∈ {244641, 1277996, 1915448} the 5-dual field M of k1 has 5-principalization
type κ(M) = (000000), a constant with six total capitulations, abelian type invariants
τ(M) = [(1)6], and abelian 5-class tower with group G(∞)

5 M = G(1)
5 M � 〈52, 2〉 and

length �5M = 1. The invariants are given by (r1, r2, δ1, δ2) = (2, 0, 1, 1).

Theorem 4.7 (Frobenius and non-Galois extensions) The properties of the absolute exten-
sions Ei/Q and the values of the invariants in the Quintic Reflection Theorem, Table 2, and
Proposition 3.1, for the 83 cases in Proposition 4.2 are the following ones:

(i) For the 2 cases with �5M = 1 in Theorem 4.6, we have

(r1, r2, δ1, δ2) = (1, 0, 0, 1) and Gal(Ei/Q) � F5,2 for 1 ≤ i ≤ 6 (Case (a)

(ii) For the other 81 cases, including the 34 cases of �5M = 2 in Theorem 4.4 and the 38
cases of �5M = 2 in Theorem 4.5, we have pairwise conjugate non-Galois extensions

E3 � E4, E5 � E6 with Gal(E1/Q) � F5,2, Gal(E2/Q) � F5,3

123

Author's personal copy



A. Azizi et al.

Fig. 3 The 5-class tower M(∞)
5 of M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
when #G(2)

5 M = 55

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(r1, r2, δ1, δ2) = (1, 0, 1, 0), for d ∈ {1996, 3121, 3129, 3253, 5241, 5269,

5308, 6113, 8309, 8689, 9829} (Case (e)),

(r1, r2, δ1, δ2) = (0, 1, 0, 1), for d ∈ {5116, 8972, 9013} (Case (f)),

(r1, r2, δ1, δ2) = (1, 1, 1, 1), for d ∈ {4504, 6949, 7221, 7229, 9669} (Case (c)),

(r1, r2, δ1, δ2) = (0, 0, 0, 0), otherwise (Case (d)).

Proof See Tables 4 and 5. ��

4.2 Real cyclic quartic fieldsMwith d < 0

Proposition 4.3 Let M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with d < 0 be a real cyclic quartic field with

5-class group of type (5, 5). Denote by Ei , 1 ≤ i ≤ 6, the six unramified cyclic quintic
extensions of M and by Li their non-Galois subfields, which are of relative degree 5 over the
field k+

0 = Q(
√
5).
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(1) If #ker( jEi /M ) = 5, then the unit norm index is

ui = (Uk+
0

: NLi /k
+
0
(ULi )) = 1,

and in this case the subfield unit index ai =
(
UEi : ULiUL ′

i
UM

)
is equal to 25.

(2) The relation between the 5-class numbers h5(Ei ) and h5(Li ) is given by

h5(Ei ) =
{
5 · h5(Li )

2 if bi = ui ,

h5(Li )
2 if bi �= ui , where bi = (

UM : NEi /M (UEi )
)
.

Proof Since d < 0, the field M is totally real, and the Dirichlet rank of its torsion-free unit
group is given by r(M) = 3.

(1) Denote by UM/Q(
√
5) the group of relative units

{ε ∈ UM | NM/Q(
√
5) (ε) = 1}.

For a cyclic quartic field K/Qwith real quadratic subfield k, Hasse showed that the group
UkUK/k has index at most 2 in the full group of unitsUK . In our case,UQ(

√
5)UM/Q(

√
5)

has index at most 2 in UM , where

UM = 〈−1, ε5, η, ημτ 〉,
with η satisfying η1+μτ = ±1. If # ker( jEi /M ) = 5, which means that the unit norm
index bi = (UM : NEi /M (UEi )) is equal to 1, then all units of M are the norms of a unit
of Ei , in particular ε5. In the same manner as in the proof of claim 1 of Proposition 4.1,
we deduce that ε5 is also the norm of a unit of Li , whence ui = 1. On the other hand, by
applying Lemma 4.1, we deduce that ai · bi = 25 · ui , and consequently ai = 25.

(2) According to Theorem 4.1 or the Lemmermeyer class number formula [11, Th.2.4,
p. 681], we conclude that h5(Ei ) = 5 · h5(Li )

2 if bi = 1 or (bi = 5 and ui = 5). But if
bi = 5 and ui = 1, we have h5(Ei ) = h5(Li )

2, which completes the proof.

��
Remark 4.5 For totally real or imaginary cyclic quartic fields M , the last case of Theorem
4.1 given by h5(Ei ) = 25 · h5(Li )

2 is impossible for any i ∈ {1, 2, 3, 4, 5, 6}.
Proposition 4.4 Let M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with d < 0 be a real cyclic quartic field

with 5-class group of type (5, 5). Let Ei , 1 ≤ i ≤ 6, be the six unramified cyclic quintic
extensions of M. Denote by G := G(2)

5 M the second 5-class group of M and assume that
the order of G is equal to |G| = 53. Then the transfer kernel type of G is κ(G) = (000000)
(capitulation type of M in the six unramified extensions Ei ) and the transfer target type of
G is τ(G) = [

(12)6
]
.

Proof In this case, the group G is extra special of maximal class. Thus, the possible types of
capitulation are (111111) and (000000). First, we know that the type (111111) is not possible,
because in this case h5(Ei ) = 52 and bi = 1, which contradicts claim (2) of Proposition 4.3.
Thus, the transfer kernel type of G is κ(G) = (000000).

On the other hand, for all 1 ≤ i ≤ 6, the unit norm index is bi = 5, and ui must be
equal to 1. Otherwise, the Lemmermeyer class number formula [11, Th.4.1, p. 456] implies
|G| ≥ 54. Thus, for all 1 ≤ i ≤ 6, we have h5(Ei ) = h5(Li )

2 and h5(Li ) = 5. Since the
six extensions Ei are of type A in the sense of Taussky and h5(Ei ) = 52, we deduce that
Cl5(Ei ) is of type (5, 5). Thus τ(G) = [

(12)6
]
. ��
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Remark 4.6 Assume that the groupG is not abelian andκ(G) = (000000). Then the prime 5
must divide the class number of the fields Li . Because, in this case bi = 5 and ui = 1 or 5.
The case ui = 1 is obvious. Now suppose that ui = 5. If 5 does not divide h(Li ), then
h5(Ei ) = 5, Hence Ei is an unramified extension of M and h5(Ei ) = h5(M)

5 . Then M (2)
5 =

M (1)
5 and the group G is abelian, which is a contradiction.

Proposition 4.5 (Number of fields) In the range −200000 < d < 0 of fundamental dis-
criminants d of imaginary quadratic fields k1 = Q(

√
d) with gcd(5, d) = 1, there exist

precisely 93 cases such that the 5-dual field M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
of k1 has a 5-class

group Cl5(M) of type (5, 5).

Proof See Tables 6, 7 and 8. ��
Theorem 4.8 (Two-stage towers of 5-class fields with groups of low order)

(1) If the 5-dual field M of k1 has 5-principalization type a.1, κ(M) = (000000), a constant
with six total capitulations, and the abelian type invariants of E1, . . . , E6 are τ(M) =
[(12)6], then the 5-tower group is the extra special group G(∞)

5 M = G(2)
5 M � 〈53, 3〉.

(2) If the 5-dual field M of k1 has 5-principalization type a.2, κ(M) = (100000) with a
fixed point and five total capitulations, and the abelian type invariants of E1, . . . , E6

are τ(M) = [13, (12)5], then the 5-tower group is the Schur+1 σ -group G(∞)
5 M =

G(2)
5 M � 〈54, 8〉.

(3) If the 5-dual field M of k1 has 5-principalization type a.1, κ(M) = (000000), a constant
with six total capitulations, and the abelian type invariants of E1, . . . , E6 are τ(M) =
[13, (12)5], then the 5-tower group is the mainline group G(∞)

5 M = G(2)
5 M � 〈54, 7〉.

Proof In each case, the length of the 5-class tower of M is given by �5M = 2, according
to Blackburn [3], since G := G(2)

5 M is a σ -group with at most two-generated commutator
subgroupG ′ ∈ {1, 12}. The presentation ofG is not balanced, since the relation rank d2(G) ∈
{3, 4} is too big. However, the Shafarevich Theorem [20] in its corrected version [15, Th.5.1,
p. 28] ensures that d2(G) ≤ d1(G) + r = 5 does not exceed the admissible upper bound,
since the generator rank of G and the torsion-free Dirichlet unit rank of M with signature
(4, 0) are given by d1(G) = �5(M) = 2 and r = 4 + 0 − 1 = 3. ��

Examples for Case (1) are 56 (about 60%) imaginary quadratic fields k1 starting with the
discriminants

d ∈ {−12883, −13147, −14339, −23336, −23732, −26743,−28696, −35067,

−35839, −38984, −47172, . . .}.
Examples for Case (2) are 23 (about 25%) imaginary quadratic fields k1 starting with the
discriminants

d ∈ {−27528, −27939, −39947, −40823, −54347, −75892, −91127, −99428,

−101784, −105431, −114679, . . .}.
Examples for Case (3) are 8 (about 9%) imaginary quadratic fields k1 with the following
discriminants

d ∈ {−15419, −16724, −31103, −42899, −67128, −70763, −105784, −194487}.
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Theorem 4.9 (Two-stage tower of 5-class fields with Schur σ -group) If the 5-dual field M
of k1 has 5-principalization type κ(M) = (124563), a 4-cycle and two fixed points, then
the abelian type invariants of E1, . . . , E6 are τ(M) = [(13)2, (21)4] and the 5-class tower
group is G(∞)

5 M = G(2)
5 M � 〈55, 11〉. In this case, the length of the 5-class tower of M is

given by �5M = 2, and G := G(2)
5 M is a Schur σ -group with balanced presentation, that is,

relation rank d2(G) = d1(G) = �5(M) = 2.

Proof Similar to the proof of Theorem 4.4. ��

The unique example is the imaginary quadratic field k1 with discriminant d = −114303.

Theorem 4.10 (Single-stage towers of 5-class fields with abelian group) For the 5 (about
5%) imaginary quadratic fields k1 with discriminants

d ∈ {−58424, −115912, −148507, −151879, −154408},
the 5-dual field M of k1 has 5-principalization type κ(M) = (000000), a constant with six
total capitulations, the abelian type invariants of E1, . . . , E6 are τ(M) = [(1)6], and the
5-class tower is abelian with group G(∞)

5 M = G(1)
5 M � 〈52, 2〉 and length �5M = 1.

Proof Similar to the proof of Theorem 4.6. ��

Theorem 4.11 (Frobenius and non-Galois extensions) The properties of the absolute exten-
sions Ei/Q and the values of the invariants in the Quintic Reflection Theorem, Table 3, and
Proposition 3.3, for the 93 cases in Proposition 4.5 are the following ones:

(1) For the 5 cases with �5M = 1 in Theorem 4.10, we have

(r1, r2, δ1, δ2) = (2, 0, 0, 0), and Gal(Ei/Q) � F5,2 for 1 ≤ i ≤ 6 (Case (a)).

(2) For the other 88 cases, including the 87 cases of �5M = 2 in Theorem 4.8, and the unique
case of �5M = 2 in Theorem 4.9, we have pairwise conjugate non-Galois extensions

E3 � E4, E5 � E6,Gal(E1/Q) � F5,2, Gal(E2/Q) � F5,3,

and

⎧
⎪⎨

⎪⎩

(r1, r2, δ1, δ2) = (2, 1, 1, 0), for d ∈ {−39947,−64103,−67128,−104503,−119191}(Case (d)),

(r1, r2, δ1, δ2) = (1, 2, 0, 1), for d ∈ {−110479, −199735} (Case (e)),

(r1, r2, δ1, δ2) = (1, 1, 0, 0), otherwise (Case (c)).

Proof See Tables 6, 7 and 8. ��

Figure 4 visualizes the relevant part of the descendant tree of finite 5-groups, beginning at
the abelian root C5 × C5 = 〈52, 2〉, on which the second 5-class groups G(2)

5 M of the fields

M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
are located as vertices. The figure is a modification of the diagram

in [13, Fig. 3.8, p. 448]. The minimal positive, resp. maximal negative, discriminants d are
indicated by underlined boldface integers adjacent to the oval surrounding the vertex realized
by G(2)

5 M . The identifiers are due to the packages [2,4] which are implemented in [12]. (For
trees, see [14].)
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Fig. 4 Tree position of second 5-class groups G(2)
5 Mof the fields M = Q

(
(ζ5 − ζ−1

5 )
√
d
)

5 Tables of second 5-class groups G(2)
5 M

5.1 Imaginary cyclic quartic fieldsMwith d > 0

Table 4, resp. Table 5, shows the factorized fundamental discriminant d of the dual quadratic
field k1, the 5-principalization type κ = κ(M), the second 5-class group G(2)

5 M , the
length �5M of the 5-class tower, the 5-class ranks r1 := �5(k1), r2 := �5(k2), the
invariants δ1, δ2, and the case in Proposition 3.1 for the 37, resp. 46, cyclic quartic fields

M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with 0 < d < 5000, resp. 5000 < d < 10000.

For the fields with constant 5-principalization type, consisting of partial kernels, we have
a polarization of the target type whose abelian invariants can be either homogeneous (15)
or inhomogeneous (213). In the inhomogeneous case, there are three possibilities for the
second 5-class group, namely 〈57, 891〉, 〈57, 894〉 and 〈57, 897〉. In the homogeneous case,
the second 5-class group 〈57, 885〉 is unique. According to the Shafarevich Theorem [20, Th.
6, Eqn. (18′)], whose misprint we have corrected in [15, Th.5.1, p. 28], these four groups,
which possess relation rank d2 = 4, are forbidden as 5-class tower groups for imaginary
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Table 4 The groupG(2)
5 Mof M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with 0 < d < 5000

No. Discriminant Principalization G(2)
5 M �5M Invariants

d Factors κ Remark r1 δ1 r2 δ2 Case

1 257 Prime (660666) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

2 457 Prime (234156) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

3 501 3, 167 (521346) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

4 508 4, 127 (653421) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

5 509 Prime (216453) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

6 581 7, 83 (123456) Identity 〈55, 14〉 2 0 0 0 0 (d)

7 629 17, 37 (154326) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

8 753 3, 251 (123456) Identity 〈55, 14〉 2 0 0 0 0 (d)

9 764 4, 191 (666066) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

10 881 Prime (463152) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

11 1113 3, 7, 53 (653421) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

12 1137 3, 379 (444444) Constant 〈57, 891|894|897〉 ≥ 3 0 0 0 0 (d)

13 1192 8, 149 (463152) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

14 1704 8, 3, 71 (653421) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

15 1708 4, 7, 61 (404444) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

16 1829 31, 59 (216453) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

17 1853 17, 109 (550555) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

18 1996 4, 499 (613254) 4-Cycle 〈55, 11〉 2 1 1 0 0 (e)

19 2008 8, 251 (550555) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

20 2189 11, 199 (505555) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

21 2296 8, 7, 41 (123456) Identity 〈55, 14〉 2 0 0 0 0 (d)

22 2573 31, 83 (613254) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

23 2829 3, 23, 41 (123456) Identity 〈55, 14〉 2 0 0 0 0 (d)

24 3121 Prime (532416) Two 2-Cycles 〈55, 7〉 2 1 1 0 0 (e)

25 3129 3, 7, 149 (333303) Nearly const. 〈55, 4〉 2 1 1 0 0 (e)

26 3169 Prime (444444) Constant 〈57, 891|894|897〉 ≥ 3 0 0 0 0 (d)

27 3253 Prime (243651) 4-Cycle 〈55, 11〉 2 1 1 0 0 (e)

28 4189 59, 71 (243651) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

29 4357 Prime (000000) Abelian 〈52, 2〉 1 1 0 0 1 (a)

30 4444 4, 11, 101 (000000) Abelian 〈52, 2〉 1 1 0 0 1 (a)

31 4461 3, 1487 (653421) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

32 4504 8, 563 (444404) Nearly const. 〈55, 4〉 2 1 1 1 1 (c)

33 4553 29, 157 (123456) Identity 〈55, 14〉 2 0 0 0 0 (d)
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Table 4 continued

No. Discriminant Principalization G(2)
5 M �5M Invariants

d Factors κ Remark r1 δ1 r2 δ2 Case

34 4697 7, 11, 61 (000000) tot., non-ab. 〈55, 3〉 ↓ ≥ 3 0 0 0 0 (d)

35 4709 17, 277 (444444) Constant 〈57, 885〉 ≥ 3 0 0 0 0 (d)

36 4861 Prime (333303) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

37 4957 Prime (135246) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

Table 5 The groupG(2)
5 Mof M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with 5000 < d < 10000

No. Discriminant Principalization G(2)
5 M �5M Invariants

d Factors κ Remark r1 δ1 r2 δ2 Case

38 5116 4, 1279 (123456) Identity 〈55, 14〉 2 0 0 1 1 (f)

39 5129 23, 223 (526431) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

40 5233 Prime (142536) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

41 5241 3, 1747 (660666) Nearly const. 〈55, 4〉 2 1 1 0 0 (e)

42 5269 11, 479 (222220) Nearly const. 〈55, 4〉 2 1 1 0 0 (e)

43 5308 4, 1327 (513462) 4-Cycle 〈55, 11〉 2 1 1 0 0 (e)

44 5361 3, 1787 (625413) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

45 5393 Prime (440444) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

46 5464 8, 683 (440444) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

47 5557 Prime (111111) Constant 〈57, 885〉 ≥ 3 0 0 0 0 (d)

48 5736 8, 3, 239 (123456) Identity 〈55, 14〉 2 0 0 0 0 (d)

49 5989 53, 113 (440444) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

50 6072 8, 3, 11, 23 (613254) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

51 6073 Prime (000000) tot., non-ab. 〈55, 3〉 ↓ ≥ 3 0 0 0 0 (d)

52 6113 Prime (421653) 4-Cycle 〈55, 11〉 2 1 1 0 0 (e)

53 6524 4, 7, 233 (513462) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

54 6761 Prime (123456) Identity 〈55, 14〉 2 0 0 0 0 (d)

55 6949 Prime (666066) Nearly const. 〈55, 4〉 2 1 1 1 1 (c)

56 6952 8, 11, 79 (220222) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

57 7032 8, 3, 293 (213546) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

58 7041 3, 2347 (666666) Constant 〈57, 885〉 ≥ 3 0 0 0 0 (d)

59 7221 3, 29, 83 (444404) Nearly const. 〈55, 4〉 2 1 1 1 1 (c)

60 7229 Prime (444444) Constant 〈57, 885〉 ≥ 3 1 1 1 1 (c)

61 7336 8, 7, 131 (606666) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)
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Table 5 continued

No. Discriminant Principalization G(2)
5 M �5M Invariants

d Factors κ Remark r1 δ1 r2 δ2 Case

62 7361 17, 433 (653421) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

63 7489 Prime (123456) Identity 〈55, 14〉 2 0 0 0 0 (d)

64 7628 4, 1907 (164253) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

65 7656 8, 3, 11, 29 (444404) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

66 7752 8, 3, 17, 19 (623145) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

67 7833 3, 7, 373 (326154) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

68 7996 4, 1999 (022222) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

69 8008 8, 7, 11, 13 (625413) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

70 8012 4, 2003 (165432) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

71 8309 7, 1187 (111110) Nearly const. 〈55, 4〉 2 1 1 0 0 (e)

72 8689 Prime (002001) Coclass 4 〈57, 115〉 ↓ ≥ 3 1 1 0 0 (e)

73 8789 11, 17, 47 (362451) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

74 8877 3, 11, 269 (463152) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

75 8972 4, 2243 (362451) 4-Cycle 〈55, 11〉 2 0 0 1 1 (f)

76 9013 Prime (123456) Identity 〈55, 14〉 2 0 0 1 1 (f)

77 9052 4, 31, 73 (333303) Nearly const. 〈55, 4〉 2 0 0 0 0 (d)

78 9544 8, 1193 (125364) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

79 9564 4, 3, 797 (425136) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

80 9573 3, 3191 (216453) Two 2-cycles 〈55, 7〉 2 0 0 0 0 (d)

81 9669 3, 11, 293 (362451) 4-Cycle 〈55, 11〉 2 1 1 1 1 (c)

82 9752 8, 23, 53 (513462) 4-Cycle 〈55, 11〉 2 0 0 0 0 (d)

83 9829 Prime (123456) Identity 〈55, 14〉 2 1 1 0 0 (e)

cyclic quartic fields with unit rank 1. Therefore, the length of the 5-class tower must be
�5M ≥ 3 at least, and we conjecture a precise three-stage tower �5M = 3.

The complete statistics of the 83 imaginary cyclic quartic fields M with 0 < d < 104 is
as follows:

– There are 23 (about 28%) cases with G(2)
5 M � 〈55, 11〉, the Schur σ -group with transfer

kernel type a 4-cycle.
– There are 22 (about 27%) cases with G(2)

5 M � 〈55, 4〉.
– There are 16 (about 19%) cases with G(2)

5 M � 〈55, 7〉.
– There are 11 (about 13%) cases with G(2)

5 M � 〈55, 14〉, the Schur σ -group with transfer
kernel type the identity permutation.

– For only 4 cases we have G(2)
5 M � 〈57, 885〉.

– For 2 cases G(2)
5 M � 〈57, 891|894|897〉.

– For 2 cases G(2)
5 M � 〈52, 2〉, the elementary bicyclic 5-group of rank 2.
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Table 6 The groupG(∞)
5 Mof M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with −100000 < d < 0

No. Discriminant Principalization G(∞)
5 M �5M Invariants

d Factors κ Type r1 δ1 r2 δ2 Case

1 −12883 13, 991 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

2 −13147 Prime (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

3 −14339 13, 1103 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

4 −15419 17, 907 (000000) a.1 ↑ 〈54, 7〉 2 1 0 1 0 (c)

5 −16724 4, 37, 113 (000000) a.1 ↑ 〈54, 7〉 2 1 0 1 0 (c)

6 −23336 8, 2917 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

7 −23732 4, 17, 349 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

8 −26743 47, 569 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

9 −27528 8, 3, 31, 37 (003000) a.2, fixed pt. 〈54, 8〉 2 1 0 1 0 (c)

10 −27939 3, 67, 139 (000050) a.2, fixed pt. 〈54, 8〉 2 1 0 1 0 (c)

11 −28696 8, 17, 211 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

12 −31103 19, 1637 (000000) a.1 ↑ 〈54, 7〉 2 1 0 1 0 (c)

13 −35067 3, 11689 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

14 −35839 Prime (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

15 −38984 8, 11, 443 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

16 −39947 43, 929 (003000) a.2, fixed pt. 〈54, 8〉 2 2 1 1 0 (d)

17 −40823 Prime (000050) a.2, fixed pt. 〈54, 8〉 2 1 0 1 0 (c)

18 −42899 Prime (000000) a.1 ↑ 〈54, 7〉 2 1 0 1 0 (c)

19 −47172 4, 3, 3931 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

20 −52276 4, 7, 1867 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

21 −54347 Prime (100000) a.2, fixed pt. 〈54, 8〉 2 1 0 1 0 (c)

22 −55667 Prime (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

23 −56167 Prime (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

24 −58424 8, 67, 109 (000000) Abelian 〈52, 2〉 1 2 0 0 0 (a)

25 −64103 13, 4931 (000000) a.1 〈53, 3〉 2 2 1 1 0 (d)

26 −64724 4, 11, 1471 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

27 −67128 8, 3, 2797 (000000) a.1 ↑ 〈54, 7〉 2 2 1 1 0 (d)

28 −69619 11, 6329 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

29 −70763 7, 11, 919 (000000) a.1 ↑ 〈54, 7〉 2 1 0 1 0 (c)

30 −74019 3, 11, 2243 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

31 −75103 7, 10729 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

32 −75892 4, 18973 (100000) a.2, fixed pt. 〈54, 8〉 2 1 0 1 0 (c)

33 −78747 3, 26249 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

34 −83636 4, 7, 29, 103 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

35 −86404 4, 21601 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

36 −91127 Prime (000400) a.2, fixed pt. 〈54, 8〉 2 1 0 1 0 (c)

37 −92219 Prime (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

38 −99428 4, 7, 53, 67 (003000) a.2, fixed pt. 〈54, 8〉 2 1 0 1 0 (c)
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Table 7 The groupG(∞)
5 Mof M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with −175000 < d < −100000

No. Discriminant Principalization G(∞)
5 M �5M Invariants

d Factors κ Type r1 δ1 r2 δ2 Case

39 −100708 4, 17, 1481 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

40 −101011 83, 1217 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

41 −101784 8, 3, 4241 (003000) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

42 −104503 7, 14929 (000000) a.1 〈53, 3〉 2 2 1 1 0 (d)

43 −105431 19, 31, 179 (000400) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

44 −105784 8, 7, 1889 (000000) a.1 ↑ 〈54, 7〉 2 1 0 1 0 (c)

45 −107791 Prime (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

46 −110479 Prime (000000) a.1 〈53, 3〉 2 1 0 2 1 (e)

47 −114303 3, 7, 5443 (263415) 4-cycle 〈55, 11〉 2 1 0 1 0 (c)

48 −114679 Prime (000006) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

49 −115912 8, 14489 (000000) Abelian 〈52, 2〉 1 2 0 0 0 (a)

50 −119191 Prime (000000) a.1 〈53, 3〉 2 2 1 1 0 (d)

51 −123028 4, 30757 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

52 −124099 193, 643 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

53 −125547 3, 41849 (003000) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

54 −127259 11, 23, 503 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

55 −127519 7, 18217 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

56 −133188 4, 3, 11, 1009 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

57 −134392 8, 107, 157 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

58 −136311 3, 7, 6491 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

59 −139703 Prime (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

60 −140232 8, 3, 5843 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

61 −142904 8, 17863 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

62 −145007 Prime (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

63 −145668 4, 3, 61, 199 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

64 −148004 4, 163, 227 (003000) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

65 −148507 97, 1531 (000000) Abelian 〈52, 2〉 1 2 0 0 0 (a)

66 −151879 7, 13, 1669 (000000) Abelian 〈52, 2〉 1 2 0 0 0 (a)

67 −154408 8, 19301 (000000) Abelian 〈52, 2〉 1 2 0 0 0 (a)

68 −155603 7, 22229 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

69 −157028 4, 37, 1061 (003000) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

70 −157031 7, 22433 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

71 −159679 13, 71, 173 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

72 −160571 211, 761 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

73 −163427 11, 83, 179 (000050) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

74 −164116 4, 89, 461 (000006) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

75 −165364 4, 41341 (000400) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

76 −169752 8, 3, 11, 643 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)
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Table 8 The groupG(∞)
5 Mof M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with −200000 < d < −175000

No. Discriminant Principalization G(∞)
5 M �5M Invariants

d Factors κ Type r1 δ1 r2 δ2 Case

77 −175076 4, 11, 23, 173 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

78 −176459 Prime (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

79 −177428 4, 44357 (100000) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

80 −180583 13, 29, 479 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

81 −181847 43, 4229 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

82 −182968 8, 22871 (000050) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

83 −185883 3, 61961 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

84 −186187 Prime (000400) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

85 −186271 Prime (000050) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

86 −190387 Prime (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

87 −193483 191, 1013 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

88 −193571 7, 27653 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

89 −194487 3, 241, 269 (000000) a.1↑ 〈54, 7〉 2 1 0 1 0 (c)

90 −196648 8, 47, 523 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

91 −196707 3, 7, 17, 19, 29 (000050) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

92 −197752 8, 19, 1301 (000000) a.1 〈53, 3〉 2 1 0 1 0 (c)

93 −199947 3, 11, 73, 83 (000400) a.2, fix pt. 〈54, 8〉 2 1 0 1 0 (c)

– For 2 cases G(2)
5 M is a descendant of 〈55, 3〉 indicated by the symbol ↓.

– The last three groups have the biggest order 59 and coclass 4.
They posses relation rank d2 = 5, which clearly enforces �5M ≥ 3 by the Shafarevich
Theorem. Again, we conjecture the equality �5M = 3.

Furthermore, we point out that the groups 〈55, 4〉 and 〈55, 7〉with relation rank d2 = 3 are
not strong σ -groups in the sense of Schoof [19]. They are forbidden as 5-class tower groups
for any quadratic field, imaginary or real. However, they are admissible for our imaginary
cyclic quartic fields M with unit rank 1, since the subfield k+

0 = Q(
√
5) also possesses unit

rank 1, and so a strong σ -group is not required.

5.2 Real cyclic quartic fieldsMwith d < 0

Table 6, resp. Table 7, resp. Table 8, shows the factorized fundamental discriminant d of
the dual quadratic field k1, the 5-principalization type κ = κ(M), the 5-class tower group
G(∞)
5 M , the length �5M of the 5-class tower, the 5-class ranks r1 := �5(k1), r2 := �5(k2), the

invariants δ1, δ2, and the case in Proposition 3.3 for the 38, resp. 38, resp. 17, cyclic quartic

fields M = Q

(
(ζ5 − ζ−1

5 )
√
d
)
with −100000 < d < 0, resp. −175000 < d < −100000,

resp. −200000 < d < −175000.

The complete statistics of the 93 real cyclic quartic fields M with −2 · 105 < d < 0 is as
follows:
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– There are 56 (about 60%) cases with G(∞)
5 M � 〈53, 3〉 the extra special 5-group of

exponent 5.
– There are 23 (about25%) cases with G(∞)

5 M � 〈54, 8〉 having a transfer kernel type with
fixed point.

– There are 8 (about 9%) cases with G(∞)
5 M � 〈54, 7〉 having total transfer kernels exclu-

sively.
– For only 5 cases we have G(∞)

5 M � 〈52, 2〉 the elementary bicyclic 5-group of rank 2.

– For a unique case G(∞)
5 M � 〈55, 11〉, Schur σ -group with transfer kernel type a 4-cycle.

The 5-class tower of M possesses length �5M = 1 for the abelian G(∞)
5 M � 〈52, 2〉, and

�5M = 2 in all other cases.
According to the Shafarevich Theorem [20, Thm. 6, Eqn. (18′)], whose misprint we have

corrected in [15, Thm.5.1, p. 28], the mainline groups 〈53, 3〉 and 〈54, 7〉 with relation rank
d2 = 4 are forbidden as 5-class tower groups for real quadratic fields with unit rank 1, but
they are admissible for real cyclic quartic fields, which have bigger unit rank 3.

5.3 The Galois action confirmed

All numerical results in the Tables 4, 5, 6, 7 and 8 are in perfect accordancewith Theorems 2.2,
2.3 and Corollary 2.1. A rigorous check with the computational algebra system MAGMA
[2,12] proves that only the two terminal Schur σ -groups 〈55, 11〉, 〈55, 14〉 and five other
capable top vertices 〈55, 3〉, 〈55, 4〉, 〈55, 5〉, 〈55, 6〉, 〈55, 7〉 in the stem of Hall’s isoclinism
family �6, and the abelian root 〈52, 2〉, together with their descendants [16], are admissible
for G(2)

5 M of any cyclic quartic field M , as drawn in Fig. 4.
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