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Abstract. Let (kµ)4µ=1 be a quartet of cyclic cubic number fields sharing a common con-

ductor c = pqr divisible by exactly three prime(power)s p, q, r. For those components of the
quartet whose 3-class group Cl3(kµ) ' (Z/3Z)2 is elementary bicyclic, the automorphism group

M = Gal(F2
3(kµ)/kµ) of the maximal metabelian unramified 3-extension of kµ is determined

by conditions for cubic residue symbols between p, q, r and for ambiguous principal ideals in
subfields of the common absolute 3-genus field k∗ of all kµ. With the aid of the relation rank

d2(M), it is decided whether M coincides with the Galois group G = Gal(F∞3 (kµ)/kµ) of the

maximal unramified pro-3-extension of kµ.
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1. Introduction

Let k be a cyclic cubic number field, that is, an abelian extension of the rational number field Q
with degree [k : Q] = 3 and some positive integer conductor c > 1 (see § 2.1). In 1973, Georges
Gras [11] determined the rank % = %(k) of the 3-class group Cl3(k) in dependence on the number

t of prime(power) divisors q1, . . . , qt of c and on the cubic residue symbols
(
qi
qj

)
3

for i 6= j. For

mutual cubic residues,
(
qi
qj

)
3

=
(
qj
qi

)
3

= 1, we write qi ↔ qj , otherwise qi 6↔ qj .

It turned out that % = 0 for t = 1, and % = 1 if t = 2 and q1 6↔ q2. So in the former case, the
maximal unramified pro-3-extension F∞3 (k) of k is the base field k itself, and in the latter case,
it is the Hilbert 3-class field F1

3(k) of k, in fact, [F1
3(k) : k] = 3, since % = 1 iff Cl3(k) ' Z/3Z is

elementary cyclic. If t = 2 and q1 ↔ q2, then % = 2, Cl3(k) is bicyclic, but may be non-elementary
(singular).

In 1995, Ayadi [2] proved that there are only two possibilities for the Galois group G =
Gal(F∞3 (k)/k) of the 3-class field tower of k with length `3(k), when t = 2, q1 ↔ q2, and
Cl3(k) ' (Z/3Z)2 is elementary bicyclic (regular), namely, in the notation of [5], either G '
SmallGroup(9, 2) ' (Z/3Z)2 is abelian or G ' SmallGroup(27, 4) is the extra special 3-group with
exponent 9.

The impact of t and q1, . . . , qt on the tower group G and its metabelianization M = G/G′′, i.e.,
the group M = Gal(F2

3(k)/k) of the second Hilbert 3-class field F2
3(k) of k, is shown in Table 1.

Table 1. Known and unknown impact of t and q1, . . . , qt on %(k) and M, G

t conditions %(k) F∞3 (k) M G `3(k)

t = 1 % = 0 = k = 1 = 1 = 0

t = 2 q1 6↔ q2 % = 1 = F1
3(k) = Z/3Z = M = 1

t = 2 q1 ↔ q2, Cl3(k) elem. % = 2 = F1
3(k) = SmallGroup(9, 2) = M = 1

or = F2
3(k) = SmallGroup(27, 4) = M = 2

t = 2 q1 ↔ q2, Cl3(k) non-elem. % = 2 ≥ F2
3(k) ? ? ≥ 2

t = 3 2 ≤ % ≤ 4 ≥ F1
3(k) ? ? ≥ 1

However, according to Gras [11], % = 2 is also possible for t = 3, and, according to Ayadi [2],
% = 2 iff Cl3(k) ' (Z/3Z)2 is elementary bicyclic, when t = 3.

For this situation t = 3, c = pqr, % = 2, Cl3(k) ' (Z/3Z)2, the present article identifies the
Galois group M = Gal(F2

3(k)/k) in dependence on the cubic residue symbols between p, q, r. The
crucial techniques are based on the lucky coincidence that the four unramified cyclic extensions
of degree [Ei : k] = 3, 1 ≤ i ≤ 4, can always be found among the 13 bicyclic bicubic subfields
B1, . . . , B13 of the absolute 3-genus-field k∗ of k, for which Parry [22] has established a useful
class number relation and a structure theory of the unit group. With the aid of the relation rank
d2(M) ≤ 4 or d2(M) ≥ 5, it is decided whether M coincides with the tower group G or not.

The examination of cyclic cubic fields k with % = 3 and elementary tricyclic Cl3(k) ' (Z/3Z)3 is
reserved for a future paper, since among the 13 unramified cyclic extensions of degree [Ei : k] = 3,
1 ≤ i ≤ 13, only four are bicyclic bicubic, and the remaining nine Ei arise in three triplets of
pairwise isomorphic non-Galois nonic fields. Similarly, Cl3(k) non-elementary for t = 2 and p↔ q.

The present work illuminates Ayadi’s doctoral thesis [2] from the perspective of group theory,
and completely clarifies the question mark “?” for the group M in the last row of Table 1, partially
also the “?” for the group G, provided that Cl3(k) ' (Z/3Z)2 is elementary bicyclic.

2. Construction of cyclic fields of odd prime degree

2.1. Multiplicity of conductors and discriminants. For a fixed odd prime number ` ≥ 3, let
k be a cyclic number field of degree `, that is, k/Q is a Galois extension of degree [k : Q] = `
with absolute automorphism group Gal(k/Q) = 〈σ | σ` = 1〉. According to the Theorem of
Kronecker, Weber and Hilbert on abelian extensions of the rational number field Q, the
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conductor c of k is the smallest positive integer such that k = kc is contained in the cyclotomic
field K = Q(ζc), where ζc = exp(2π

√
−1/c) denotes a primitive c-th root of unity, more precisely,

in the `-ray class field modulo c of Q, denoted by F`,c(Q), which lies in the maximal real subfield
K+ = Q(ζc + ζ−1c ) of K = Q(ζc).

Theorem 1. The conductor of a cyclic field of odd prime degree ` has the shape c = `e ·q1 · · · qτ ,
where e ∈ {0, 2} and the qi are pairwise distinct prime numbers qi ≡ +1 (mod `), for 1 ≤ i ≤ τ .
The discriminant of k = kc is the perfect (`− 1)-th power dk = c`−1, and the number of rational
primes which are (totally) ramified in k is given by

(2.1) t :=

{
τ if e = 0 (` is unramified in k),

τ + 1 if e = 2 (` is ramified in k).

In the last case, we formally put qτ+1 := `2. The number of non-isomorphic cyclic number fields
kc,1, . . . , kc,m of degree `, sharing the common conductor c, is given by the multiplicity formula

(2.2) m = m(c) = (`− 1)t−1.

Proof. See [14, p. 831]. �

2.2. Construction as ray class fields. For the construction of all cyclic number fields k = kc of
degree ` with ascending conductors b ≤ c ≤ B between an assigned lower bound b and upper bound
B by means of the computational algebra system Magma [12], the class field theoretic routines
by Fieker [9] can be used without the need of preparing a list of suitable generating polynomials
of `-th degree. The big advantage of this technique is that the cyclic number fields of degree `
are produced as a multiplet (kc,1, . . . , kc,m) of pairwise non-isomorphic fields sharing the common
conductor c with multiplicity m ∈ {1, ` − 1, (` − 1)2, (` − 1)3, . . .} in dependence on the number
t ∈ {1, 2, 3, 4, . . .} of primes dividing the conductor c, according to Formula (2.2). Our algorithms
for the construction, and statistics of `-class groups, have been presented in [20, Alg. 1–3, pp.
4–7, Tbl. 1.1–1.6, pp. 7–11]. From now on, let ` = 3, for the remainder of this article.

3. Arithmetic of cyclic cubic fields

Generally, t denotes the number of prime divisors of the conductor c of a cyclic cubic number field k,
and %(k) = %3(k) denotes the rank dimF3

(Cl3(k)/Cl3(k)3) of the 3-class group Cl3(k) = Syl3Cl(k).
In formulas concerning principal factors (§ 3.2), the prime power conductor 32 must be replaced
by 3.

3.1. Rank of 3-class groups. Since the rank %3(k) of the 3-class group Cl3(k) of a cyclic cubic
field k depends on the mutual cubic residue conditions between the prime(power) divisors q1, . . . , qt
of the conductor c, Gras [11, pp. 21–22] has introduced directed graphs with t vertices q1, . . . , qt
whose directed edges qi → qj describe values of cubic residue symbols. We use a simplified notation
of these graphs, fitting in a single line, but occasionally requiring the repetition of a vertex.

Definition 1. Let ζ3 be a fixed primitive third root of unity. For each pair (qi, qj) with 1 ≤
i 6= j ≤ t, the value of the cubic residue symbol

(
qi
qj

)
3

= ζ
aij
3 is determined uniquely by the

integer aij ∈ {−1, 0, 1}. Let a directed edge qi → qj be defined if and only if
(
qi
qj

)
3

= 1, that

is, qi is a cubic residue modulo qj (and thus aij = 0). The combined cubic residue symbol
[q1, . . . , qt]3 :=

(3.1)

{
qi → qj

∣∣∣∣∣ i 6= j,

(
qi
qj

)
3

= 1

}⋃{
qi

∣∣∣∣∣ (∀j 6= i)

(
qi
qj

)
3

6= 1,

(
qj
qi

)
3

6= 1

}
where the subscripts i and j run from 1 to t, is defined as the union of the set of all directed edges
which occur in the graph associated with q1, . . . , qt in the sense of Gras, and the set of all isolated
vertices. For t = 3, we additionally need the invariant δ := a12a23a31 − a13a32a21 in order to
distinguish two subcases of the case with three isolated vertices.
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Theorem 2. (Rank Distribution, G. Gras, 1973, [11, Prop. VI.5, pp. 21–22].)
Let k be a cyclic cubic field of conductor c = q1 · · · qt with 1 ≤ t ≤ 3. We indicate mutual cubic
residues simply by writing q1 ↔ q2 instead of q1 → q2 → q1.

• If t = 1, then m = 1, k forms a singlet, [q1]3 = {q1}, and %(k) = 0.
• If t = 2, then m = 2, k is member of a doublet (k1, k2), and there arise two possibilities.

(1) (%(k1), %(k2)) = (1, 1), if

(3.2) [q1, q2]3 =

{
{q1, q2} , Graph 1, or

{qi → qj} , Graph 2, with i 6= j.

(2) (%(k1), %(k2)) = (2, 2), if

(3.3) [q1, q2]3 = {q1 ↔ q2}, Graph 3.

• If t = 3, then m = 4, k is member of a quartet (k1, . . . , k4), and there arise five cases.
(1) (%(k1), . . . , %(k4)) = (2, 2, 2, 2), called Category III, if

(3.4) [q1, q2, q3]3 =



{q1, q2, q3; δ 6≡ 0 (mod 3)} , Graph 1, or

{qi → qj ; ql} , Graph 2, or

{qi → qj → ql} , Graph 3, or

{qi → qj → ql → qi} , Graph 4, or

{qi ↔ qj ; ql} , Graph 5, or

{qi ↔ qj → ql} , Graph 6, or

{qi ↔ qj ← ql} , Graph 7, or

{ql → qi ↔ qj ← ql} , Graph 8, or

{ql → qi ↔ qj → ql} , Graph 9

with i, j, l pairwise distinct.
(2) (%(k1), . . . , %(k4)) = (3, 2, 2, 2), called Category I, if

(3.5) [q1, q2, q3]3 =

{
{q1, q2, q3; δ ≡ 0 (mod 3)} , Graph 1, or

{qi ← qj → ql} , Graph 2

with i, j, l pairwise distinct.
(3) (%(k1), . . . , %(k4)) = (3, 3, 2, 2), called Category II, if

(3.6) [q1, q2, q3]3 =

{
{qi → qj ← ql} , Graph 1, or

{qi → qj ← ql → qi} , Graph 2

with i, j, l pairwise distinct.
(4) (%(k1), . . . , %(k4)) = (3, 3, 3, 3), called Category IV, if

(3.7) [q1, q2, q3]3 =


{qi ← qj ↔ ql → qi} , Graph 1, or

{qi ↔ qj ↔ ql} , Graph 2, or

{qi ↔ qj ↔ ql → qi} , Graph 3

with i, j, l pairwise distinct.
(5) (%(k1), . . . , %(k4)) = (4, 4, 4, 4), called Category V, if

(3.8) [q1, q2, q3]3 = {q1 ↔ q2 ↔ q3 ↔ q1}.

Proof. See [11, Prp. VI.5, pp. 21–22]. Multiplicities m ∈ {1, 2, 4} are taken from Theorem 1. �

Remark 1. Ayadi introduced categories in [2, pp. 45–47]. He investigated the cases t = 2,
Formula (3.3), and t = 3, Formulae (3.4), (3.5), (3.6), in Theorem 2. For t = 3, he denoted
the nine subcases of Formula (3.4) by Graph 1,2,3,4,5,6,7,8,9 of Category III, the two subcases
of Formula (3.5) by Graph 1,2 of Category I, and the two subcases of Formula (3.6) by Graph
1,2 of Category II. For the Categories I and II, Ayadi did not study the fields with 3-class rank
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%3(kµ) = 3, 1 ≤ µ ≤ 4. Our algorithms for the classification by categories and graphs, and their
statistics, have been presented in [20, Alg. 4–5, Tbl. 2.1, pp. 15–19].

For t = 3, we also write briefly p = q1, q = q2 and r = q3 for the prime(power)s dividing the
conductor c = pqr. Graph 1 of Category I with symbol [p, q, r]3 = {p, q, r; δ ≡ 0 (mod 3)} and
Graph 1 of Category III with symbol [p, q, r]3 = {p, q, r; δ 6≡ 0 (mod 3)} are the only two situations
without any trivial cubic residue conditions between p, q, r. We show the impact of the δ-invariant.

Lemma 1. Consider three cubic residue symbols for products of two primes,
(
qr
p

)
3
,
(
pr
q

)
3
,
(
pq
r

)
3

with respect to triviality, i.e., being equal to 1.
If δ ≡ 0, then zero or two of the symbols are trivial.
If δ 6≡ 0, then one or three of the symbols are trivial.

Proof. For each of the two triplets (a12, a23, a31) and (a32, a13, a21) of exponents in Definition 1,
there are 23 = 8 combinatorial possibilities. The product of the components is +1 if zero or two
components are negative, and it is −1 if one or three components are negative.

For Graph I.1 with δ ≡ 0, triplets with equal product must be combined. Consequently, for each
choice of a fixed first triplet, one of the four admissible second triplets (namely (a32, a13, a21) =
(a12, a23, a31)) produces no trivial symbol, and three of the second triplets produce two trivial
symbols each.

For Graph III.1 with δ 6≡ 0, triplets with distinct product must be combined. Consequently, for
each choice of a fixed first triplet, one of the four admissible second triplets (namely (a32, a13, a21) =
−(a12, a23, a31)) produces three trivial symbols, and three of the second triplets produce a single
trivial symbol each. �

3.2. Ambiguous principal ideals. The number of primitive ambiguous ideals of a cyclic cubic
field k, which are invariant under Gal(k/Q) = 〈σ〉, increases with the number t of prime factors
of the conductor c. According to Hilbert’s Theorem 93, the number is given by

(3.9) #
(
I〈σ〉k /IQ

)
= 3t.

However, the number of primitive ambiguous principal ideals of k is a fixed invariant of all cyclic
cubic fields, regardless of the number t.

Theorem 3. The number of ambiguous principal ideals of any cyclic cubic field k is given by

(3.10) #
(
P〈σ〉k /PQ

)
= 3.

Proof. The well-known theorem on the Herbrand quotient of the unit group Uk of k as a
Galois module over the group Gal(k/Q) = 〈σ〉, which can be expressed by abstract cohomol-

ogy groups #H−1(〈σ〉, Uk)/#Ĥ0(〈σ〉, Uk) = [k : Q], can also be stated more ostensively as

#
(
P〈σ〉k /PQ

)
= #

(
Ek/Q/U

1−σ
k

)
= [k : Q] · #

(
UQ/Nk/Q(Uk)

)
= 3, since the unit norm index

is given by
(
UQ : Nk/Q(Uk)

)
= 1. Here, Ek/Q = {ε ∈ Uk | Nk/Q(ε) = 1} are the relative units. �

Consequently, if we speak about a non-trivial primitive ambiguous principal ideal of k, then we

either mean (α) = αOk or (α2/b) = (α2/b)Ok, where P〈σ〉k /PQ = {1, (α), (α2/b)}. The norms of
these two elements are divisors of the square c2 = q21 · · · q2t of the conductor c of k, where qt must
be replaced by 3 if qt = 9. When Nk/Q(α) = a · b2 with square free coprime integers a, b, then

Nk/Q(α2/b) = a2 · b4/b3 = a2 · b. It follows that both norms are cube free integers.

Definition 2. The minimum of the two norms of non-trivial primitive ambiguous principal ideals
(α), (α2/b) of a cyclic cubic field k is called the principal factor (of the discriminant dk = c2) of
the field k, denoted by A(k) := min{a · b2, a2 · b}, that is

(3.11) A(k) =

{
a · b2 if b < a,

a2 · b if a < b.
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Ayadi [2, Rem. 2.6, p. 18], [3] speaks about the Parry constant or Parry invariant A(k) of k, and
Derhem [8] calls A(k) = Nk/Q(R) with R = 1 + ε+ ε1+σ, ε = R1−σ, the Kummer resolvent of k,
when Uk = 〈−1, ε, εσ〉 as a 〈σ〉-module is generated by −1 and the fundamental unit ε. However,
the concept of principal factors has been coined much earlier by Barrucand and Cohn [4]. Our
algorithm for the determination of principal factors has been presented in [20, Alg. 6, pp. 20–21].

Theorem 4. (Principal factor criterion, Ayadi, 1995, [2, Thm. 3.3, p. 37].)
Let c be a conductor divisible by two primes, t = 2, such that Cl3(kc,µ) ' (3, 3) for both cyclic
cubic fields kc,µ, 1 ≤ µ ≤ 2, with conductor c. Denote by P the number of prime divisors of the
norm A(k) = Nk/Q(α) of a non-trivial primitive ambiguous principal ideal (α), i.e. a principal
factor, of any of the two fields k = kc,µ. Then P ∈ {1, 2},
and the second 3-class group M = Gal(F2

3(k)/k) of both fields k = kc,µ is given by

(3.12) M '

{
〈9, 2〉 with capitulation type a.1, κ(k) = (0000), if P = 2,

〈27, 4〉 with capitulation type A.1, κ(k) = (1111), if P = 1.

The length of the Hilbert 3-class field tower is `3(k) = 1 with F∞3 (k) = F1
3(k) if P = 2, and

`3(k) = 2 with F∞3 (k) = F2
3(k) if P = 1. In both cases, G = Gal(F∞3 (k)/k) = M.

Proof. See [2, Prp. 3.6, p. 32, Thm. 3.1, p. 34, Thm. 3.3, p. 37] and [20, pp. 31–33]. �

The first example c = 19 · 1129 = 21 451 for M ' 〈27, 4〉 is due to Scholz and Taussky [25, pp.
209–210]. It was misprinted as 19 · 1429 = 27 151 in [26, p. 383]. Systematic tables have been
presented at http://www.algebra.at/ResearchFrontier2013ThreeByThree.htm in §§ 1.1–1.2.

Concerning the 3-capitulation types a.1 and A.1, viewed as transfer kernel types (TKT), and
the related concept of transfer target types (TTT), i.e., abelian type invariants (ATI), see [15].

4. Unramified extensions of cyclic cubic fields

In this crucial section, we first introduce the absolute 3-genus field k∗ (§ 4.1) of a cyclic cubic
number field k. Then we show that the bicyclic bicubic subfields B < k∗ constitute unramified
cyclic cubic relative extensions B/k of a cyclic cubic number field k with t = 3. Finally, using
the unramified cyclic cubic relative extensions E/k as capitulation targets (§ 4.3), we define the
capitulation kernels (§ 4.2) of a cyclic cubic number field k with non-trivial 3-class group Cl3(k).

4.1. The absolute 3-genus field. The absolute 3-genus field k∗ = (k/Q)∗ of a cyclic cubic field k
is the maximal unramified 3-extension k∗/k with abelian absolute Galois group Gal(k∗/Q). If the
conductor c = q1 · · · qt of k = kc has t prime divisors, then k∗ is the compositum of the multiplet
(kc,1, . . . , kc,m) of all cyclic cubic fields sharing the common conductor c, where m = m(c) = 2t−1,
according to the multiplicity formula (2.2). The absolute Galois group Gal(k∗/Q) is the elementary
abelian 3-group (Z/3Z)t. In particular, if t = 1, c = q1, then k∗ = k is the cyclic cubic field itself,
and if t = 2, c = q1q2, then k∗ = kc,1 · kc,2 is a bicyclic bicubic field with conductor c and
discriminant

(4.1) d(k∗) = d(kq1) · d(kq2) · d(kc,1) · d(kc,2) = q21 · q22 · (q1q2)2 · (q1q2)2 = c6.

In 1990, Parry [22] investigated the arithmetic of a general bicyclic bicubic field B/Q with con-
ductor c = q1 · · · qt, t ≥ 2, and four cyclic cubic subfields k1, . . . , k4. In particular, he determined
the class number relation in terms of the index I of subfield units of B.

Theorem 5. Let M := (ei,j) be the (4 × t)-matrix of integer exponents in the following repre-

sentation of the principal factors A(ki) =
∏t
j=1 q

ei,j
j , for 1 ≤ i ≤ 4. Then:

(1) The Galois group Gal(B/Q) ' (3, 3) is elementary bicyclic.
(2) The index I := (U : V ) of the subgroup V := 〈U1, . . . , U4〉 generated by the unit groups

Ui := Uki , 1 ≤ i ≤ 4, in the unit group U := UB is bounded by I = 3e, 0 ≤ e ≤ 3.
(3) The class number of B satisfies the following relation:

(4.2) h(B) =
I

35
·

4∏
i=1

h(ki) =
(U : V )

243
· h(k1) · h(k2) · h(k3) · h(k4),
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where I denotes the abovementioned index of subfield units of B.
(4) 3 - h(B) if and only if c = pq, i.e. t = 2, and p 6↔ q are not mutual cubic residues, i.e.,

the graph of p, q is either Graph 1 or Graph 2. If 3 - h(B), then I = 27.
(5) In dependence on the rank 2 ≤ rM := rank(M) ≤ 4 of the matrix M , the index I takes

the following values:

(4.3) I = (U : V ) =


1 if rM = 4,

3 if rM = 3,

9 or 27 if rM = 2.

Proof. For the class number relation, see Parry [22, Prp. 7, p. 496, Thm. 9, p. 497]. Generally,
the index of subfield units, I, is a divisor of 27 = 33 [22, Lem. 11, p. 500, Thm. 13, p. 501]. See

also Ayadi [2, Prop. 2.7.(2) and Prop. 2.8, p. 20]. Note that p 6↔ q implies
∏4
i=1 h(ki) = 9. �

Corollary 1. Let t = 3 and B be a bicyclic bicubic field with conductor c = pqr such that there
are no mutual cubic residues among p, q, r. Then:

(1) For all 1 ≤ j ≤ 4, h3(Bj) =
(Uj :Vj)

32 h3(kj).

(2) For all 5 ≤ j ≤ 10, h3(Bj) =
(Uj :Vj)

34 h3(ki)h3(k`), where 1 ≤ i, ` ≤ 4, i 6= `, and ki, k` are
the two components of the quartet which are contained in Bj.

Proof. By (4.8), the first statement is valid, since h3(k) = 3 for the six subfields k with t = 2. By
(4.9), the second statement holds, since h3(k) = 1 for the three subfields k with t = 1. �

For a cyclic cubic field k with t = 2, c = pq, the 3-class numbers of the 3-genus field k∗, which
is bicyclic bicubic, and of its four cyclic cubic subfields can be summarized as follows.

Theorem 6. Let k∗ = kp · kq · kc,1 · kc,2 be the genus field of the two cyclic cubic fields kc,1 and
kc,2 with conductor c = pq. Denote the 3-valuations of the class numbers h∗, h1, h2, h3, h4 of k∗,
kp, kq, kc,1, kc,2, respectively, by v∗, v1, v2, v3, v4. Then v1 = v2 = 0, and

(4.4) v∗


= 0, v3 = v4 = 1, I = 27, if p 6↔ q,

= 1, if p↔ q, v3 = v4 = 2, I = 9,

= 2, if p↔ q, v3 = v4 = 2, I = 27,

≥ 3, if p↔ q, v3 ≥ 3, v4 ≥ 3, I ≥ 9.

Proof. According to Theorem 2, we generally have v1 = v2 = 0, v3 ≥ 1, v4 ≥ 1 if p 6↔ q, and
v3 ≥ 2, v4 ≥ 2 if p↔ q. Now, the claim is a consequence of Formula (4.2), which yields

v∗ = v3(h∗) = v3(I)− 5 +

4∑
i=1

v3(hi) = v3(I)− 5 + v1 + v2 + v3 + v4 = v3(I)− 5 + v3 + v4.

The combination of [22, Thm. 9, p. 497] and [22, Cor. 1, p. 498] shows that v∗ = 0 if and only
if p 6↔ q, and v∗ = 0 implies v3(I) = 3, whence necessarily v3 = v4 = 1. However, if p ↔ q, then
v3 = 2 is equivalent with v4 = 2, according to [3, Thm. 4.1, p. 472]. �

Remark 2. For v3 = v4 = 2, we have Cl3(kpq,µ) ' (3, 3). The smallest occurrences of v3 = v4 = 3
are the conductors 7 · 673 = 4 711 (“Eau de Cologne”, singular with Cl3(k∗) ' (3, 3, 3)) and
7 · 769 = 5 383 (super-singular with Cl3(k∗) ' (9, 3, 3)) both with Cl3(kpq,µ) ' (9, 3), for
µ ∈ {1, 2}.

For a cyclic cubic field k with t = 3 and conductor c = q1q2q3, the 3-genus field k∗ contains 13
bicyclic bicubic subfields. Three of them are the sub genus fields Bi := (kfi−10

)∗, 11 ≤ i ≤ 13,
of the cyclic cubic fields with conductors f1 = q1q2, f2 = q1q3, f3 = q2q3, respectively. In the
numerical tables of [20], we always start with the leading three sub genus fields Bi, 11 ≤ i ≤ 13,
separated by a semicolon from the trailing ten remaining bicyclic bicubic subfields, when we give
a family of invariants for these 13 subfields B1, . . . , B13,

(4.5) in particular, [Cl3Bi]1≤i≤13 := [Cl3(B11), . . . ,Cl3(B13); Cl3(B1), . . . ,Cl3(B10)].
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4.2. Capitulation kernels. We recall the connection between the size of the capitulation kernel
ker(TE/k) and the unit norm index (Uk : NE/k(UE)) of an unramified cyclic cubic extension E/k
of a cyclic cubic field k. Here, TE/k : Cl3(k) → Cl3(E), aPk 7→ (aOE)PE , denotes the extension
homomorphism or transfer of 3-classes from k to E.

Theorem 7. The order of the 3-capitulation kernel or transfer kernel of E/k is given by

(4.6) # ker(TE/k) =


3,

9,

27,

if and only if (Uk : NE/k(UE)) =


1,

3,

9.

Proof. According to the Herbrand Theorem on the cohomology of the unit group UE as a
Galois module with respect to G = Gal(E/k), we have the relation # ker(TE/k) = [E : k] · (Uk :

NE/k(UE)), since ker(TE/k) ' H1(G,UE) when E/k is unramified of odd prime degree [E : k] = 3

and Uk/NE/k(UE) ' Ĥ0(G,UE). The cyclic cubic base field k has signature (r1, r2) = (3, 0) and
torsionfree Dirichlet unit rank r = r1 + r2 − 1 = 3 + 0− 1 = 2. Thus, there are three possibilities
for the unit norm index (Uk : NE/k(UE)) ∈ {1, 3, 9}. �

Remark 3. When k is a cyclic cubic field with 3-class group O := Cl3(k) of elementary tricyclic
type (3, 3, 3), viewed as a vector space of dimension 3 over the finite field F3, then # ker(TE/k) = 3
if and only if ker(TE/k) = Li is a line for some 1 ≤ i ≤ 13, # ker(TE/k) = 9 if and only if
ker(TE/k) = Pi is a plane for some 1 ≤ i ≤ 13, and # ker(TE/k) = 27 if and only if ker(TE/k) = O
is the entire vector space over F3. Details are reserved for a future paper. Our algorithms
for the determination of the capitulation kernels for Cl3(k) of type (3, 3) and (3, 3, 3) have been
presented in [20, Alg. 8–9, pp. 26–30].

In our theorems on cyclic cubic fields with t = 3 belonging to the various graphs of each category,
we shall frequently find particular statements which relate several similar capitulation types.

Definition 3. Let G be a 3-group with generator rank d1(G) = 2 and elementary bicyclic com-
mutator quotient G/G′ ' (3, 3). By TG,Hi : G/G′ → Hi/H

′
i we denote the transfers from G to

the four maximal normal subgroups Hi, 1 ≤ i ≤ 4. Then the set of all ordered transfer kernel
types κ = (κi)1≤i≤4 with κi := ker(TG,Hi) is endowed with a partial order relation κ ≤ κ′ by
(∀ 1 ≤ i ≤ 4) κi ≤ κ′i. The order is strict, κ < κ′, when κ ≤ κ′ and (∃ 1 ≤ j ≤ 4) κj < κ′j .

The possibilities for a strict order are rather limited, since a transfer kernel is either cyclic of order
3 (partial — by Hilbert’s Theorem 94, it cannot be trivial) or bicyclic of type (3, 3) (total). As
usual, we abbreviate κi = j if (∃ 1 ≤ j ≤ 4) ker(TG,Hi) = Hj/G

′, and κi = 0 if ker(TG,Hi) = G/G′,
for fixed 1 ≤ i ≤ 4. So, κ < κ′ ⇐⇒ (∃ 1 ≤ j, i ≤ 4) κj = Hi/G

′ < G/G′ = κ′j . The arithmetical
application of this group theoretic Definition 3 is given in the following definition.

Definition 4. Let K be an algebraic number field with elementary bicyclic 3-class goup Cl3(K) '
(3, 3). Then K has four unramified cyclic cubic relative extensions Ei/K, 1 ≤ i ≤ 4, and corre-
sponding class extension homomorphisms TEi/K : Cl3(K) → Cl3(Ei). Let M := Gal(F2

3(K)/K)
be the Galois group of the second Hilbert 3-class field of K, that is, the maximal metabelian
unramified 3-extension of K. Then κ(K) := κ(M) is called the minimal transfer kernel type
(mTKT) of K, if κ(K) ≤ κ′(K), for any other possible capitulation type κ′(K).

4.3. Capitulation targets. The precise constitution of the lattice of all subfields of the absolute
3-genus field k∗ of a cyclic cubic field k = kpqr with t = 3 and conductor c = pqr is as follows.

Theorem 8. The genus field k∗ of k contains 13 cyclic cubic fields,

(4.7)
kp,1, kq,1, kr,1, kpq,1, kpq,2, kpr,1, kpr,2, kqr,1, kqr,2, kpqr,1, kpqr,2, kpqr,3, kpqr,4, briefly

kp, kq, kr, kpq, k̃pq, kpr, k̃pr, kqr, k̃qr, k1, k2, k3, k4.

The composita L := kpqkprkqr and L̃ := k̃pqk̃prk̃qr satisfy the skew balance of degrees

[L : Q] · [L̃ : Q] = 243 with [L : Q] = 9 and [L̃ : Q] = 27, or vice versa.
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Alert: Always in the sequel, the normalization [L : Q] = 9 is assumed.
The genus field k∗ of k contains 13 bicyclic bicubic fields,

(4.8)

4 single capitulation targets B1 := kpqkpr = k1kpqkprkqr,

B2 := k̃prk̃qr = k2kpqk̃prk̃qr,

B3 := k̃pqk̃pr = k3k̃pqk̃prkqr,

B4 := k̃pqk̃qr = k4k̃pqkprk̃qr,

(4.9)

6 double capitulation targets B5 := kpk̃qr = k1k3kpk̃qr,

B6 := kqk̃pr = k1k4kqk̃pr,

B7 := krk̃pq = k1k2krk̃pq,

B8 := kpkqr = k2k4kpkqr,

B9 := kqkpr = k2k3kqkpr,

B10 := krkpq = k3k4krkpq,

(4.10)

and 3 sub genus fields B11 := kpqk̃pq = kpkqkpqk̃pq,

B12 := kprk̃pr = kpkrkprk̃pr,

B13 := kqrk̃qr = kqkrkqrk̃qr,

provided that kpq,kpr, kqr are normalized. The conductor of B1, . . . , B10 is c = pqr, the conductor
of B11 is f1 = pq, the conductor of B12 is f2 = pr, and the conductor of B13 is f3 = qr.

Proof. See [2, Prop. 4.1, p. 40, Lem. 4.1, p. 42]. The short form suffices for construction. �

The algorithm for the determination of bicyclic bicubic fields has been presented in [20, Alg. 7,
pp. 24–26], but B5, . . . , B10 should be defined as in Formula (4.9) (short form without k1, . . . , k4).

Corollary 2. The capitulation targets, i.e. the unramified cyclic cubic relative extensions
of k1, respectively k2, respectively k3, respectively k4, among the absolutely bicyclic bicubic sub-
fields of the 3-genus field k∗ = kpkqkr are B1, B5, B6, B7, respectively B2, B7, B8, B9, respectively
B3, B5, B9, B10, respectively B4, B6, B8, B10. In particular, B7 is common to both, k1 and k2, B5

is common to k1 and k3, B6 is common to k1 and k4, B9 is common to k2 and k3, B8 is common
to k2 and k4, and B10 is common to k3 and k4.

Proof. This follows immediately from Theorem 8, Equations (4.8) and (4.9). �

Proposition 1. If there exists 1 ≤ j ≤ 10 such that h3(Bj) = 3, then h3(B`) = 3, for all
1 ≤ ` ≤ 10, and h3(ki) = 9, for all 1 ≤ i ≤ 4.

The 3-class number of Bj, 1 ≤ j ≤ 10, satisfies the tame condition h3(Bj) = (Uj : Vj) if and
only if for each cyclic cubic subfield k of Bj the Hilbert 3-class field F1

3(k) of k coincides with the
genus field k∗ of k. Otherwise the wild condition h3(Bj) > (Uj : Vj) holds.

If there exists 1 ≤ j ≤ 10 such that h3(Bj) > (Uj : Vj), then 9 | h3(B`), for all 1 ≤ ` ≤ 10.

Proof. The condition is trivial for the subfields k with t = 1, since h3(k) = [F1
3(k) : k] = [k∗ : k] = 1

is satisfied anyway. However, the subfields k with t = 2 must have the 3-class number h3(k) =
[F1

3(k) : k] = [k∗ : k] = 3, in particular, the prime divisors of the conductor are not mutual cubic
residues, and the subfields k with t = 3 must have 3-class number h3(k) = [F1

3(k) : k] = [k∗ : k] = 9,
that is, they cannot have 3-class rank %(k) ≥ 3. For details see [2, pp. 47–48, i.p. Prop. 4.5]. �

Let t = 3 and kµ, 1 ≤ µ ≤ 4, be one of the four cyclic cubic number fields sharing the common
conductor c = pqr, and suppose Bj , 1 ≤ j ≤ 10, is one of the ten bicyclic bicubic subfields of
the absolute 3-genus field k∗ of kµ such that Bj/kµ is an unramified cyclic extension of degree 3.
We denote by Uj the unit group of Bj , by Vj the subgroup generated by all subfield units, by rj
the rank of the principal factor matrix Mj of Bj , and by A = (aιλ) the right upper triangular
(8 × 8)-matrix such that (γ31 , . . . , γ

3
8) = (ε1, . . . , ε8) · A (in the sense of exponentiation), for a
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suitable torsion free basis (γ1, . . . , γ8) of Uj and a canonical basis (ε1, . . . , ε8) of Vj , according to
[22, pp. 497–503] and [2, pp. 19–22].

For several times, Ayadi [2] alludes to the following fact: the minimal subfield unit index
(Uj : Vj) = 3 for the matrix rank rj = 3 of Bj corresponds to the maximal unit norm index
(U(kµ) : NBj/kµ(Uj)) = 3, associated with a total transfer kernel # ker(TBj/kµ) = 9 of Bj/kµ.
Since he does not give a prove, we summarize all related issues in a lemma.

Lemma 2. The following statements are equivalent, row by row:

(4.11)

(Uj : Vj) = 3 ⇐⇒ a77 = 3, a88 = 3, a66 = 1 =⇒ (U(kµ) : NBj/kµ(Uj)) = 3,

(Uj : Vj) = 9 ⇐⇒ a77 = 3, a88 = 1, a66 = 1 =⇒ (U(kµ) : NBj/kµ(Uj)) = 3,

(Uj : Vj) = 27 ⇐⇒ a77 = 1, a88 = 1, a66 = 1 ⇐⇒ (U(kµ) : NBj/kµ(Uj)) = 1.

Proof. According to Theorem 5, rj = 3 ⇐⇒ (Uj : Vj) = 3, and rj = 2 ⇐⇒ (Uj : Vj) ∈ {9, 27}.
Now, a77 = 1 implies γ37 = (

∏6
ι=1 ε

aι7
ι ) · ε7, NBj/kµ(γ7) = ±ε7, (U(kµ) : NBj/kµ(Uj)) = 1,

but a77 = 3 implies γ37 = (
∏6
ι=1 ε

aι7
ι ) · ε37, NBj/kµ(γ7) = ±ε37, (U(kµ) : NBj/kµ(Uj)) = 3.

Finally, Theorem 7 on the Herbrand quotient of Uj shows the cardinality of the transfer
kernel, # kerTBj/kµ = [kµ : Q] · (U(kµ) : NBj/kµ(Uj)) = 3 · (U(kµ) : NBj/kµ(Uj)). �

Proposition 2. Let ` be an odd prime, and suppose that B = K · L is a bicyclic field of degree
`2, compositum of two cyclic fields K and L of degree `. If p is a prime number which ramifies in
both, K and L, i.e., pOK = p`1 and pOL = p`2, then the extension ideals p1OB = p2OB coincide.

Proof. If the decomposition invariants of p in B are (e, f, g) = (`, 1, `), resp. (`, `, 1), resp. (`2, 1, 1),
then those of p1 and p2 in B must be identical (e, f, g) = (1, 1, `), resp. (1, `, 1), resp. (`, 1, 1), and
unique prime decomposition enforces p1OB = p2OB . �

Corollary 3. Let µ ∈ {1, 2, 3, 4} and pOkµ = p3, qOkµ = q3, rOkµ = r3. Then the follow-
ing capitulation laws for ideal classes hold independently of the combined cubic residue symbol
[p, q, r]3.

(1) [p] capitulates in B5/kµ, for µ = 1, 3, and in B8/kµ, for µ = 2, 4.
(2) [q] capitulates in B6/kµ, for µ = 1, 4, and in B9/kµ, for µ = 2, 3.
(3) [r] capitulates in B7/kµ, for µ = 1, 2, and in B10/kµ, for µ = 3, 4.

Proof. We show that [p] ∈ Cl3(k1) capitulates in B5. Everythig else is proved in the same way,

always using Proposition 2 with ` = 3. The bicyclic bicubic field B5 = k1k3kpk̃qr is compositum
of the cyclic cubic fields kp and k1. Since the conductor of kp is p, the principal factor A(kp) = p
is determined uniquely, and pOkp = p30 is totally ramified, whence p0 = αOkp with α ∈ k×p is

necessarily a principal ideal. Since the conductor of k1 is c = pqr, the prime pOk1 = p3 is also
totally ramified, and Proposition 2 asserts that pOB5

= p0OB5
, which is the principal ideal αOB5

.
Thus the class [p] capitulates in B5. �

Proposition 3. If
(
p
q

)
3

= 1 but
(
q
p

)
3
6= 1, then Cl3(kpq) ' (3), Cl3(k̃pq) ' (3), and two

principal factors are given by A(kpq) = p, A(k̃pq) = p.

Proof. If p → q, then p splits in kq, pOkq = ℘1℘2℘3, and Cl3(kpq) ' (3), according to Georges

Gras [11]. The Hilbert 3-class field F1
3(kpq) of kpq with [F1

3(kpq) : kpq] = 3 coincides with the

absolute 3-genus field k∗ = kp · kq = kpq · k̃pq of the doublet (kpq, k̃pq) with [k∗ : Q] = 9 and
[k∗ : kpq] = 3.

Since the conductor of kpq is pq, pOkpq = p3 is ramified in kpq, but k∗ is unramified over kpq,

and the decomposition invariants of p in k∗ are (e, f, g) = (3, 1, 3), those of p in k∗ = F1
3(kpq) are

(e, f, g) = (1, 1, 3), i.e. p splits completely in F1
3(kpq),

By the decomposition law of the Hilbert 3-class field, p = αOkpq is principal with α ∈ k×pq.

Therefore the unique principal factor of kpq is A(kpq) = p. The same reasoning is true for k̃pq. �

Proposition 4. Let µ ∈ {1, 2, 3, 4}, such that Cl3(kµ) ' (3, 3).

If
(
p
q

)
3

= 1 and
(
p
r

)
3

= 1, then the principal factor of kµ is A(kµ) = p.
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Proof. Since Cl3(kµ) ' (3, 3), the Hilbert 3-class field F1
3(kµ) of kµ with [F1

3(kµ) : kµ] = 9 coincides
with the absolute 3-genus field k∗ = kp · kq · kr of the quartet (k1, . . . , k4) with [k∗ : Q] = 27 and
[k∗ : kµ] = 9.

Since the conductor of kµ is c = pqr, pOkµ = p3 is ramified in kµ, but k∗ is unramified over kµ.
If q ← p → r is universally repelling, then p splits in kq and in kr, and the decomposition

invariants of p in k∗ are (e, f, g) = (3, 1, 9), those of p in k∗ = F1
3(kµ) are (e, f, g) = (1, 1, 9), i.e.

p splits completely in F1
3(kµ), and the decomposition law of the Hilbert 3-class field implies that

p = αOkµ is principal with α ∈ k×µ . Therefore the unique principal factor of kµ is A(kµ) = p. �

5. Finite 3-groups of type (3,3)

In the following tables, we list those invariants of finite 3-groups G with elementary bicyclic
commutator quotient G/G′ ' (3, 3) which qualify metabelian groups M as second 3-class groups
Gal(F2

3(k)/k) and non-metabelian groups G as 3-class field tower groups Gal(F∞3 (k)/k) of cyclic
cubic number fields k. The process of searching for suitable groups in descendant trees with the
strategy of pattern recognition [19] is governed by the Artin pattern AP = (α,κ) [17, p. 27],
where α = α1, respectively κ = κ1, denotes the first layer of the transfer target type (TTT),
respectively transfer kernel type (TKT). Additionally, we give the top layer α2 of the TTT, which
consists of the abelian quotient invariants of the commutator subgroup M′, corresponding to the
3-class group of the first Hilbert 3-class field F1

3(k) of k. The nuclear rank ν is responsible for
the search complexity. The p-multiplicator rank µ of a group G is precisely its relation rank
d2(G) = dimF3

H2(G,F3), which decides whether G is admissible as Gal(F∞3 (k)/k), according
to the Shafarevich Theorem [24], [17]. In the case of cyclic cubic fields k, it is limited by the
Shafarevich bound µ ≤ % + r + θ, where % = d1(G) = dimF3 H1(G,F3) denotes the generator
rank of G, which coincides with the 3-class rank % of k, r = r1 + r2 − 1 = 2 is the torsion free
Dirichlet unit rank of the field k with signature (r1, r2) = (3, 0), and θ = 0 indicates the absence
of a (complex) primitive third root of unity in the totally real field k. Finally, π(M) = M/γc(M)
denotes the parent of M, that is the quotient by the last non-trivial lower central with c = cl(M).

Theorem 9. Let k be a cyclic cubic number field with elementary bicyclic 3-class group Cl3(k) '
(3, 3). Denote by M = Gal(F2

3(k)/k) the second 3-class group of k, and by G = Gal(F∞3 (k)/k)
the 3-class field tower group of k. Then, the Artin pattern (α,κ) of k identifies the groups M
and G, and determines the length `3(k) of the 3-class field tower of k, according to the following
deterministic laws. (See the associated descendant tree T 1〈9, 2〉 in [20, Fig. 6.1, p. 44].)

(1) If α = [1, 1, 1, 1], κ = (0000) (type a.1), then G ' 〈9, 2〉 and `3(k) = 1.
(2) If α ∼ [11, 2, 2, 2], κ ∼ (1111) (type A.1), then G ' 〈27, 4〉.
(3) If α ∼ [111, 11, 11, 11], κ ∼ (2000) (type a.3∗), then G ' 〈81, 7〉.
(4) If α ∼ [21, 11, 11, 11], κ ∼ (2000) (type a.3), then G ' 〈81, 8〉.
(5) If α ∼ [21, 11, 11, 11], κ ∼ (1000) (type a.2), then G ' 〈81, 10〉.
(6) If α ∼ [22, 11, 11, 11], κ ∼ (2000) (type a.3), then G ' 〈243, 25〉.
(7) If α ∼ [22, 11, 11, 11], κ ∼ (1000) (type a.2), then G ' 〈243, 27〉.

Except for the abelian tower in item (1), the tower is metabelian with `3(k) = 2.

Proof. Generally, a cyclic cubic field k has signature (r1, r2) = (3, 0), torsion free unit rank r =
r1 + r2 − 1 = 2, does not contain primitive third roots of unity, and thus possesses the maximal
admissible relation rank d2 ≤ d1 + r = 4 for the group G, when its 3-class rank, i.e. the generator
rank of G, is d1 = % = 2. Consequently, `3(k) ≥ 3 in the case of d2(M) ≥ 5.

For item (1), we have M = Gal(F2
3(k)/k) ' 〈9, 2〉 ' (3, 3) ' Cl3(k) ' Gal(F1

3(k)/k), whence
`3(k) = 1. We always identify groups according to [5] and [10].

For item (2) to item (7), the group M is of maximal class (coclass cc(M) = 1), and thus
coincides with G, whence `3(k) = 2.

In each case, the Artin pattern (α,κ) identifies M = G uniquely, and the relation ranks
are d2〈9, 2〉 = 3, d2〈27, 4〉 = 2, d2〈81, 7〉 = 3, d2〈81, 8〉 = 3, d2〈81, 10〉 = 3, d2〈243, 25〉 = 3,
d2〈243, 27〉 = 3, each of them less than 4. �
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Corollary 4. Under the assumptions of Theorem 9, the abelian type invariants α2 of the 3-class
group Cl3(F1

3(k)) of the first Hilbert 3-class field of k are required for the unambiguous identification
of the following groups G respectively M. (See the associated descendant tree T 2〈729, 40〉 in [20,
Fig. 6.2, p. 45].)

If α ∼ [21, 11, 11, 11], κ = (0000), a.1, then G '

{
〈81, 9〉 for α2 = [11],

〈243, 28..30〉 for α2 ∼ [21].

If α ∼ [21, 21, 111, 111], κ ∼ (0043), b.10, then M '

{
〈729, 34..36〉 for α2 = [1111],

〈729, 37..39〉 for α2 ∼ [211].

Proof. The Artin pattern (α,κ) of k alone is not able to identify the groups M and G unambigu-
ously. Ascione [1] uses the notation 〈729, 34〉 = H, 〈729, 35〉 = I, 〈729, 37〉 = A, 〈729, 38〉 = C. �

Table 2. Invariants of metabelian 3-groups M with M/M′ ' (3, 3)

M cc Type κ α α2 ν µ π(M)

〈9, 2〉 1 a.1 (0000) 1, 1, 1, 1 0 3 3 —

〈27, 4〉 1 A.1 (1111) 11, 2, 2, 2 1 0 2 〈9, 2〉
〈81, 7〉 1 a.3∗ (2000) 111, 11, 11, 11 11 0 3 〈27, 3〉
〈81, 8〉 1 a.3 (2000) 21, 11, 11, 11 11 0 3 〈27, 3〉
〈81, 9〉 1 a.1 (0000) 21, 11, 11, 11 11 1 4 〈27, 3〉
〈81, 10〉 1 a.2 (1000) 21, 11, 11, 11 11 0 3 〈27, 3〉
〈243, 25〉 1 a.3 (2000) 22, 11, 11, 11 21 0 3 〈81, 9〉
〈243, 27〉 1 a.2 (1000) 22, 11, 11, 11 21 0 3 〈81, 9〉
〈243, 28..30〉 1 a.1 (0000) 21, 11, 11, 11 21 0 3 〈81, 9〉
〈243, 3〉 2 b.10 (0043) 21, 21, 111, 111 111 2 4 〈27, 3〉

〈729, 34〉 = H 2 b.10 (0043) 21, 21, 111, 111 1111 2 5 〈243, 3〉
〈729, 35〉 = I 2 b.10 (0043) 21, 21, 111, 111 1111 1 4 〈243, 3〉
〈729, 37〉 = A 2 b.10 (0043) 21, 21, 111, 111 211 2 5 〈243, 3〉
〈729, 38〉 = C 2 b.10 (0043) 21, 21, 111, 111 211 1 4 〈243, 3〉
〈729, 40〉 = B 2 b.10 (0043) 22, 21, 111, 111 211 2 5 〈243, 3〉
〈729, 41〉 = D 2 d.19 (4043) 22, 21, 111, 111 211 1 4 〈243, 3〉
〈729, 42〉 2 d.23 (1043) 22, 21, 111, 111 211 0 3 〈243, 3〉
〈729, 43〉 2 d.25 (2043) 22, 21, 111, 111 211 0 3 〈243, 3〉

〈2187, 248|249〉 2 d.19 (4043) 32, 21, 111, 111 221 0 4 〈729, 40〉
〈2187, 250〉 2 d.23 (1043) 32, 21, 111, 111 221 0 4 〈729, 40〉
〈2187, 251|252〉 2 d.25 (2043) 32, 21, 111, 111 221 0 4 〈729, 40〉
〈2187, 253〉 2 b.10 (0043) 22, 21, 111, 111 221 1 5 〈729, 40〉
〈6561, 1989〉 2 d.19 (4043) 33, 21, 111, 111 321 0 4 〈2187, 247〉
〈243, 8〉 2 c.21 (0231) 21, 21, 21, 21 111 1 3 〈27, 3〉

〈729, 52〉 = S 2 G.16 (4231) 22, 21, 21, 21 211 1 3 〈243, 8〉
〈729, 54〉 = U 2 c.21 (0231) 22, 21, 21, 21 211 2 4 〈243, 8〉
〈2187, 301|305〉 2 G.16 (4231) 32, 21, 21, 21 221 1 4 〈729, 54〉
〈2187, 303〉 2 c.21 (0231) 32, 21, 21, 21 221 1 4 〈729, 54〉

〈2187, 64〉 = P7 3 b.10 (0043) 22, 22, 111, 111 2111 4 6 〈243, 3〉
〈2187, 65|67〉 3 H.4 (3343) 22, 22, 111, 111 2111 3 5 〈243, 3〉
〈2187, 66|73〉 3 F.11 (1143) 22, 22, 111, 111 2111 2 4 〈243, 3〉
〈2187, 69〉 3 G.16 (1243) 22, 22, 111, 111 2111 2 4 〈243, 3〉
〈2187, 71〉 3 G.19 (2143) 22, 22, 111, 111 2111 2 4 〈243, 3〉

〈6561, 676|677〉 3 d.19 (4043) 32, 22, 111, 111 2211 0 5 〈2187, 64〉
〈6561, 678〉 3 d.23 (1043) 32, 22, 111, 111 2211 0 5 〈2187, 64〉
〈6561, 679|680〉 3 d.25 (2043) 32, 22, 111, 111 2211 0 5 〈2187, 64〉
〈6561, 693..698〉 3 b.10 (0043) 22, 22, 111, 111 2211 0 5 〈2187, 64〉
P7 −#2; 34|35 4 H.4 (3343) 32, 32, 111, 111 2221 1 5 〈2187, 64〉

In Table 2, we begin with metabelian groups M of generator rank d1(M) = 2. The Shafarevich
bound [17, Thm. 5.1, p. 28] is given by µ ≤ %+ r + θ = 2 + 2 + 0 = 4. For order 6561 see [13].

Table 3. Invariants of non-metabelian 3-groups G with G/G′ ' (3, 3)

G cc Type κ α α2 ν µ G/G′′

〈2187, 263..265〉 2 d.19 (4043) 22, 21, 111, 111 211 0 3 〈729, 41〉
〈2187, 307|308〉 2 c.21 (0231) 22, 21, 21, 21 211 0 3 〈729, 54〉
〈6561, 619|623〉 3 G.16 (4231) 32, 21, 21, 21 221 1 3 〈2187, 301|305〉

Capital letters for M are due to Ascione [1]. For the metabelian groups M with non-trivial
cover cov(M) [17, p. 30], we need non-metabelian groups G in the cover, which are given in Table
3, where we begin with groups G of generator rank d1(G) = 2. For d1(G) = 3, we refer to a
forthcoming paper. Instead of the parent π(G), we give the metabelianization G/G′′.
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6. Categories I and II

Common feature of these two categories is the inhomogeneity of 3-class ranks of the four compo-
nents in the quartet (kµ)4µ=1 sharing the conductor c = pqr. In the present article, we restrict
ourselves to 3, respectively 2, components with elementary bicyclic 3-class group Cl3(kµ) ' (3, 3),
for Category I, respectively Category II, and we postpone elementary tricyclic Cl3(kµ) ' (3, 3, 3)
to a future paper. All computations for examples were performed with Magma [6, 7, 12].

Definition 5. According to the 3-class numbers h3(kµ), a quartet (kµ)4µ=1 of cyclic cubic fields
with common conductor c = pqr belonging to Category I or II is called

(6.1)


regular

singular

super-singular

if max{h3(kµ) | 1 ≤ µ ≤ 4}


= 27,

= 81,

≥ 243.

In a regular, respectively singular, respectively super-singular, quartet, there occurs a 3-class
group Cl3(kµ) ' (3, 3, 3), respectively Cl3(kµ) ' (9, 3, 3), respectively Cl3(kµ) ' (9, 9, 3), for some
1 ≤ µ ≤ 4.

6.1. Category I, Graph 1. Let (k1, . . . , k4) be a quartet of cyclic cubic number fields sharing
the common conductor c = pqr, belonging to Graph 1 of Category I with combined cubic residue
symbol [p, q, r]3 = {p, q, r; δ ≡ 0 (mod 3)}.

Since there are no trivial cubic residue symbols among the three prime(power) divisors p, q, r
of the conductor c = pqr, the principal factors of the subfields with t = 2 of the absolute genus
field k∗ must be divisible by both relevant primes, and we can use the general approach

(6.2)

A(kpq) = p`q, A(k̃pq) = p−`q,

A(kpr) = pmr, A(k̃pr) = p−mr, and

A(kqr) = qnr, A(k̃qr) = q−nr,

with `,m, n ∈ {−1, 1}, identifying −1 ≡ 2 (mod 3), since it is easier to manage: `2 = m2 = n2 = 1.

Lemma 3. The product ` ·m · n = −1 is negative (that is, either one or three among `,m, n are
negative) if and only if the compositum L = kpqkprkqr satisfies the normalization [L : Q] = 9:

(6.3)
` ·m · n = −1 ⇐⇒ [L : Q] = 9,

` ·m · n = +1 ⇐⇒ [L : Q] = 27.

Proof. By Theorem 8, the fields L and L̃ = k̃pqk̃prk̃qr, satisfy a skew balance of their degrees

∈ {9, 27} in the product [L : Q] · [L̃ : Q] = 243.
Suppose lmn = +1. Then we produce a contradiction by the assumption that [L : Q] = 9 and

[L̃ : Q] = 27. We define the compositum K := k̃pqk̃pr of degree 9. Then K contains one of the

fields kµ, µ = 1, . . . , 4, and either k̃qr or kqr. In the former case, K = L̃ would have degree 27. So

K = k̃pqk̃prkqr, and we calculate the following sub-determinants of the principal factor matrices
ML and MK , with respect to the fields with t = 2 only (ignoring the field with t = 3):∣∣∣∣∣∣
` 1 0

m 0 1

0 n 1

∣∣∣∣∣∣ = −`n−m = 0 ⇐⇒

∣∣∣∣∣∣
−` 1 0

−m 0 1

0 n 1

∣∣∣∣∣∣ = `n+m = 0 ⇐⇒ `n = −m.

However, lmn = +1 implies `n = m and thus rank 3 of ML and MK . By (4.3), this gives indices
of subfield units (UL : VL) = 3 and (UK : VK) = 3. At least one among L and K, say X, does not
contain the critical field kµ with %3(kµ) = 3, whence it is tame with h3(X) = (UX : VX) = 3, in
contradiction to 9 | h3(X), by Proposition 1. Thus we must have [L : Q] = 27.

With nearly identical arguments, it is easy to show that lmn = −1 implies [L : Q] = 9. �

Lemma 4. (3-class ranks of components for I.1.) Without loss of generality, precisely three
components k2, k3, k4 of the quartet have elementary bicyclic 3-class groups Cl3(kµ) ' (3, 3),
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2 ≤ µ ≤ 4, whereas the single remaining component k1 has 3-class rank %3(k1) = 3. In dependence
on the decisive principal factors in Equation (6.2), the principal factors of kµ are

(6.4)

A(k2) = pq2r, A(k3) = pqr, A(k4) = pqr2 if (`,m, n) = (1, 1, 2),

A(k2) = p2qr, A(k3) = pqr2, A(k4) = pqr if (`,m, n) = (1, 2, 1),

A(k2) = pqr, A(k3) = pq2r, A(k4) = p2qr if (`,m, n) = (2, 1, 1),

A(k2) = pqr2, A(k3) = p2qr, A(k4) = pq2r if (`,m, n) = (2, 2, 2).

The tame condition 9 | h3(Bj) = (Uj : Vj) ∈ {9, 27} with rj = 2 is satisfied for j ∈ {2, 3, 4, 8, 9, 10}.
A further decisive principal factor A(k1) = pe1qe2re3 and the associated invariant counter

D := #{1 ≤ i ≤ 3 | ei 6= 0} admit several conclusions for wild ranks:

(6.5) r5 = r6 = r7 = 3 iff D = 2 iff A(k1) has precisely two prime divisors.

Proof. According to [2, Prop. 4.4, pp. 43–44], the required condition to distinguish the unique
component k1 with 3-class rank %(k1) = 3 in the quartet (kµ)4µ=1 is the set of decomposition in-
variants (e, f, g) = (3, 1, 3) simultaneously for p, q, r in the bicyclic bicubic field B1 = k1kpqkprkqr,
that is,
p splits in kqr, and thus also in Bj for j ∈ {1, 3, 8},
q splits in kpr, and thus also in Bj for j ∈ {1, 4, 9},
r splits in kpq, and thus also in Bj for j ∈ {1, 2, 10}.

Then, exactly the six fields B2 = k2kpqk̃prk̃qr, B3 = k3k̃pqk̃prkqr, B4 = k4k̃pqkprk̃qr, B8 =
k2k4kpkqr, B9 = k2k3kqkpr, B10 = k3k4krkpq do not contain k1, and satisfy the tame relation
9 | h3(Bj) = (Uj : Vj) ∈ {9, 27} with ranks rj = 2 for j = 2, 3, 4, 8, 9, 10, by Proposition 1.

This fact can be exploited for each tame bicyclic bicubic field Bj , by calculating the rank rj
with row operations on the associated principal factor matrix Mj and drawing conclusions for the
exponents xµ, yµ, zµ in the approach A(kµ) = pxµqyµrzµ , 1 ≤ µ ≤ 4:

M8 =


x2 y2 z2
x4 y4 z4
1 0 0

0 n 1

, M9 =


x2 y2 z2
x3 y3 z3
0 1 0

m 0 1

, M10 =


x3 y3 z3
x4 y4 z4
0 0 1

` 1 0

.

For B8 = k2k4kpkqr, M8 leads to decisive pivot elements z2 − ny2 and z4 − ny4 in the last
column, for B9 = k2k3kqkpr, M9 leads to z2 − mx2 and z3 − mx3 in the last column, and for
B10 = k3k4krkpq, M10 leads to y3 − `x3 and y4 − `x4 in the middle column.

So r8 = r9 = r10 = 2 implies ny2 ≡ z2, ny4 ≡ z4, z2 ≡ mx2, z3 ≡ mx3, `x3 ≡ y3, `x4 ≡ y4. Or,
in combined form, mx2 ≡ ny2 ≡ z2, mx3 ≡ −ny3 ≡ z3, −mx4 ≡ ny4 ≡ z4. This yields (6.4).

Additionally, we use the remaining three tame ranks for

M2 =


x2 y2 z2
` 1 0

−m 0 1

0 −n 1

, M3 =


x3 y3 z3
−` 1 0

−m 0 1

0 n 1

, M4 =


x4 y4 z4
−` 1 0

m 0 1

0 −n 1

.

For B2 = k2kpqk̃prk̃qr, M2 leads to the decisive pivot elements z2 + mx2 + ny2, `m + n in the

last column, for B3 = k3k̃pqk̃prkqr, M3 leads to z3 +mx3 − ny3, −`m− n in the last column, and

for B4 = k4k̃pqkprk̃qr, M4 leads to z4−mx4 +ny4, `m+n in the last column. So r2 = r3 = r4 = 2
implies mx2 + ny2 ≡ −z2, mx3 − ny3 ≡ −z3, −mx4 + ny4 ≡ −z4, since the other pivot elements
vanish a priori, `m + n = 0, i.e. `m = −n, because `mn = −1 and n2 = 1 in Lemma 3. The
congruences follow already from those for r8 = r9 = r10 = 2.

For each wild bicyclic bicubic field Bj , j ∈ {1, 5, 6, 7}, the rank rj is now calculated with row
operations on the associated principal factor matrix Mj :

M1 =


x1 y1 z1
` 1 0

m 0 1

0 n 1

, M5 =


x1 y1 z1
x3 y3 z3
1 0 0

0 −n 1

, M6 =


x1 y1 z1
x4 y4 z4
0 1 0

−m 0 1

, M7 =


x1 y1 z1
x2 y2 z2
0 0 1

−` 1 0

.
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For B1 = k1kpqkprkqr, M1 leads to the decisive pivot element z1−mx1−ny1, since −`m−n ≡ 0.

So, r1 = 2 implies z1 ≡ mx1 +ny1. For B5 = k1k3kpk̃qr, M5 leads to z1 +ny1, z3 +ny3 in the last

column. So, r5 = 3 iff either −z1 6≡ ny1 or −z3 6≡ ny3 modulo 3. For B6 = k1k4kqk̃pr, M6 leads

to z1 +mx1, z4 +mx4. So, r6 = 3 iff either −z1 6≡ mx1 or −z4 6≡ mx4. For B7 = k1k2krk̃pq, M7

leads to y1 + `x1, y2 + `x2 in the middle column. So, r7 = 3 iff either −y1 6≡ `x1 or −y2 6≡ `x2.
For each of these three ranks, the second condition can never be satisfied.

Since at most one of the exponents x1, y1, z1 may vanish, the new congruences immediately
lead to (6.5). For instance, z1 = 0 ⇒ −z1 = 0 6≡ ny1, −z1 = 0 6≡ mx1 ⇒ r5 = r6 = 3;
but 0 = z1 ≡ mx1 + ny1 also implies mx1 ≡ −ny1, mnx1 ≡ −y1, `x1 ≡ y1 and thus r7 = 3.
Conversely, suppose D = 3. If −z1 6≡ ny1, then z1 ≡ ny1, and z1 ≡ mx1 + ny1 implies mx1 ≡ 0,
and thus the contradiction x1 = 0. �

Proposition 5. (Sub-triplet with 3-rank two for I.1.) For fixed µ ∈ {2, 3, 4}, let p, q, r be the
prime ideals of kµ over p, q, r, that is pOkµ = p3, qOkµ = q3, rOkµ = r3, then the 3-class group of
kµ is generated by any two among the non-trivial classes [p], [q], [r], that is,

(6.6) Cl3(kµ) = 〈[p], [q]〉 = 〈[p], [r]〉 = 〈[q], [r]〉 ' (3, 3).

The unramified cyclic cubic relative extensions of kµ are among the absolutely bicyclic bicubic
subfields Bi, 1 ≤ i ≤ 10, of the common genus field k∗ of the four components of the quartet
(k1, . . . , k4). The unique B9 > kµ, µ ∈ {2, 3}, has norm class group NB9/kµ(Cl3(B9)) = 〈[q]〉, and
potential fixed point transfer kernel

ker(TB9/kµ) ≥ 〈[q]〉.

The unique B10 > kµ, µ ∈ {3, 4}, has norm class group NB10/kµ(Cl3(B10)) = 〈[r]〉, and potential
fixed point transfer kernel

ker(TB10/kµ) ≥ 〈[r]〉.
The unique B8 > kµ, µ ∈ {2, 4}, has norm class group NB8/kµ(Cl3(B8)) = 〈[qrn]〉, and potential
fixed point transfer kernel

ker(TB8/kµ) ≥ 〈[qnr]〉.
The remaining Bi > kµ, i ∈ {5, 6, 7}, more precisely, i = 7 for µ = 2, i = 5 for µ = 3, and
i = 6 for µ = 4, have norm class group 〈[q2r−n]〉 and a hidden or explicit transposition transfer
kernel, with respect to the corresponding µ.

Proof. As mentioned in the proof of Lemma 4, q splits in B9, r splits in B10, and p splits in B8,
where [p] = [qrn], according to (6.4), independently of n ∈ {1, 2}.
Now we use Corollary 3 and Proposition 2.
Since q is principal in kq, [q] capitulates in B6 = k1k4kqk̃pr and B9 = k2k3kqkpr.

Since r is principal in kr, [r] capitulates in B7 = k1k2krk̃pq and B10 = k3k4krkpq.

Since qnr is principal in kqr, [qnr] capitulates in B3 = k3k̃pqk̃prkqr and B8 = k2k4kpkqr. �

In terms of capitulation targets in Corollary 2, Proposition 5 and parts of its proof are now
summarized in Table 4 for the minimal transfer kernel type (mTKT) and n = 2, with transposition
in boldface font. This essential new perspective admits progress beyond Ayadi’s work [2].

Table 4. Norm class groups and minimal transfer kernels with n = 2 for Graph I.1

Base k2 k3 k4
Ext B2 B7 B8 B9 B3 B5 B9 B10 B4 B6 B8 B10

NCG r qr qr2 q qr qr2 q r q qr qr2 r

TK qr r qr2 q qr2 qr q r qr q qr2 r

κ 2 1 3 4 2 1 3 4 2 1 3 4
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Theorem 10. (Second 3-class group for I.1.) Let (k1, . . . , k4) be a quartet of cyclic cubic
number fields sharing the common conductor c = pqr belonging to Graph 1 of Category I, that is,
[p, q, r]3 = {p, q, r; δ ≡ 0 (mod 3)}. Without loss of generality, suppose that Cl3(kµ) ' (3, 3), for
µ = 2, 3, 4, and %3(k1) = 3.

Then the minimal transfer kernel type (mTKT) of kµ, 2 ≤ µ ≤ 4, is κ0 = (4231), type
G.16, and other possible capitulation types in ascending partial order κ0 < κ < κ′,κ′′ < κ′′′ are
κ = (0231), type c.21, κ′ = (0001), type a.3, κ′′ = (0200), type a.2, and κ′′′ = (0000), type a.1.

In order to identify the second 3-class group M = Gal(F2
3(kµ)/kµ), 2 ≤ µ ≤ 4, let the principal

factor of k1 be A(k1) = pe1qe2re3 , and define D := #{1 ≤ i ≤ 3 | ei 6= 0}. In the regular situation
where Cl3(k1) ' (3, 3, 3) is elementary tricyclic, we have

(6.7) M '


〈81, 8〉, α = [11, 11, 11, 21], κ = (0001) once if D = 2, N = 1,

〈81, 10〉2, α = [11, 21, 11, 11], κ = (0200) twice if D = 2, N = 1,

〈243, 25〉, α = [11, 11, 11, 22], κ = (0001) once if D = 3, N = 1,

〈243, 28..30〉2, α = [21, 11, 11, 11], κ = (0000) twice if D = 3, N = 0,

where N := #{1 ≤ j ≤ 10 | kµ < Bj , Ij = 27}. In the (super-)singular situation where
81 | h(k1) and Cl3(k1) is non-elementary tricyclic, we have M '

(6.8)


〈243, 8〉3, α = [21, 21, 21, 21], κ = (0231) if h3(k1) = 81, D = 2, N = 3,

〈729, 54〉3, α = [22, 21, 21, 21], κ = (0231) if h3(k1) = 81, D = 3, N = 3,

〈2187, 301|305〉3, α = [32, 21, 21, 21], κ = (4231) if h3(k1) = 81, D = 3, N = 4,

〈2187, 303〉3, α = [32, 21, 21, 21], κ = (0231) if h3(k1) = 243, D = 3, N = 3.

With exception of the last three rows, the 3-class field tower has the group G = Gal(F∞3 (kµ)/kµ) '
M, `3(kµ) = 2, since d2(M) ≤ 4. For the last three rows, the tower length is 2 ≤ `3(kµ) ≤ 3 [17].
(See the associated descendant tree T 2〈243, 8〉 in [20, Fig. 6.4, p. 63].)

Proof. In the non-uniform regular situations, we have rj = 2, h3(Bj) = Ij ∈ {9, 27} for the tame
bicyclic bicubic fields j ∈ {2, 3, 4, 8, 9, 10}. Now we use Lemma 2 and Lemma 4.

If D = 3, then all tame indices of subfield units Ij = 9 are minimal, and the ranks of wild
bicyclic bicubic fields are rj = 2 for j = 5, 6, 7, but non-uniform indices two times I5 = I6 = 9, i.e.
N = 0, and one time I7 = 27, i.e. N = 1, corresponding to total capitulation twice and non-fixed
point capitulation once (due to a hidden transposition). According to Theorem 9, the common
α2 = (21), and Corollary 4, the Artin pattern α = [21, 11, 11, 11] and κ = (0000) determines three
possible groups 〈243, 28..30〉, and α = [11, 11, 11, 22], κ = (0001) uniquely leads to 〈243, 25〉.

If D = 2, then tame indices of subfield units Ij are non-uniform, two times Ij = 9, for j =
2, 4, 9, 10, and one time Ij = 27, for j = 3, 8, the latter corresponding to fixed point capitulation
twice, j = 8 over µ = 2, 4, and non-fixed point capitulation once, j = 3 over µ = 3. So N = 1,
since the ranks of wild bicyclic bicubic fields are rj = 3 with uniform index Ij = 3 for j = 5, 6, 7,
corresponding to a total capitulation. The Artin pattern α = [11, 21, 11, 11], κ = (0200) uniquely
determines the group 〈81, 10〉, and α = [11, 11, 11, 21], κ = (0001) uniquely leads to 〈81, 8〉.

In the uniform singular situation with TKT c.21, κ = (0231), N = 3, the ATI decide about
the group: α = [21, 21, 21, 21] uniquely identifies 〈243, 8〉, α = [22, 21, 21, 21] leads to 〈729, 54〉,
and in the super-singular situation, α = [32, 21, 21, 22] leads to 〈2187, 303〉. In contrast, for TKT
G.16, κ = (4231), N = 4, the ATI α = [32, 21, 21, 21] lead to 〈2187, 301|305〉.

The regular groups are of maximal class, which guarantees length `3(kµ) = 2 of the tower. The
annihilator ideal of 〈243, 8〉 is L, which enforces `3(kµ) = 2, according to Scholz and Taussky [23].
The (super-)singular groups 〈729, 54〉 and 〈2187, 303〉 have non-metabelian descendants. Although
they satisfy the bound d2(G) ≤ 4 for the relation rank, a tower with three stages could only be
excluded by means of computationally expensive invariants α(2) of second order. �

Corollary 5. (Non-uniformity of the sub-triplet for I.1.) Only two components of the sub-
triplet with 3-rank two share a common capitulation type κ(kλ) ∼ κ(kµ), common abelian type
invariants α(kλ) ∼ α(kµ), and a common second 3-class group Gal(F2

3(kλ)/kλ) ' Gal(F2
3(kµ)/kµ).
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The invariants of the third component kν differ in the regular situation Cl3(k1) ' (3, 3, 3),
however, they agree in the (super-)singular situation 81 | h(k1). Here, {λ, µ, ν} = {2, 3, 4}.

Proof. This is an immediate consequence of Theorem 10. �

Example 1. Examples 1–9 are supplemented by [20, Tbl. 6.4–21, pp. 49–67]. The prototypes
for Graph I.1, that is, the minimal conductors for each scenario in Theorem 10, are as follows.

There are regular cases: c = 4 977 with symbol {9, 7, 79} and, non-uniformly, G = M =
〈243, 25〉, 〈243, 28..30〉2 (Corollary 4); c = 11 349 with symbol {9, 13, 97} and, non-uniformly,
G = M = 〈81, 8〉, 〈81, 10〉2.

Further, singular cases: c = 28 791 with symbol {9, 7, 457} and M = 〈729, 54〉3; c = 38 727
with symbol {9, 13, 331} and G = M = 〈243, 8〉3; and, with considerable statistic delay, there
occurred c = 417 807 with ordinal number 189, symbol {9, 13, 3571} and M = 〈2187, 301|305〉3.

And super-singular cases: c = 67 347 with symbol {9, 7, 1069} and M = 〈2187, 303〉3; c =
436 267 with symbol {13, 37, 907} and M = (〈6561, 2050〉 −#1; 3|5)3.

In Table 5, we summarize the prototypes of graph I.1. Data comprises ordinal number No.,
conductor c of k, combined cubic residue symbol [p, q, r]3, regularity, resp. (super-)singularity,
expressed by 3-valuation v = v3(#Cl(k1)) of class number of critical field k1, critical exponents
x, y, z in principal factor A(k1) = pxqyrz and `,m, n in A(kpq) = p`q, A(kpr) = pmr, A(kqr) = qnr,
capitulation type of k, second 3-class group M = Gal(F2

3(k)/k) of k, and length `3(k) of 3-class
field tower of k. We put R := 〈6561, 2050〉 for abbreviation.

Table 5. Prototypes for Graph I.1

No. c p, q, r v x, y, z; `,m, n capitulation type M `3(k)

1 4 977 9, 7, 79 3 2, 1, 1; 1, 1, 2 a.3, a.1 〈243, 25〉, 〈243, 28..30〉2 = 2

3 11 349 9, 13, 97 3 0, 1, 1; 2, 1, 1 a.3, a.2 〈81, 8〉, 〈81, 10〉2 = 2

10 28 791 9, 7, 457 4 2, 1, 1; 1, 1, 2 c.21 〈729, 54〉3 ≥ 2

14 38 727 9, 13, 331 4 1, 0, 1; 2, 1, 1 c.21 〈243, 8〉3 = 2

27 67 347 9, 7, 1069 5 2, 1, 1; 1, 1, 2 c.21 〈2187, 303〉3 ≥ 2

189 417 807 9, 13, 3571 4 2, 2, 1; 2, 2, 2 G.16 〈2187, 301|305〉3 ≥ 2

198 436 267 13, 37, 907 6 1, 1, 1; 2, 2, 2 G.16 (R−#1; 3|5)3 ≥ 2

6.2. Category I, Graph 2. Let (k1, . . . , k4) be a quartet of cyclic cubic number fields sharing
the common conductor c = pqr, belonging to Graph 2 of Category I with combined cubic residue
symbol [p, q, r]3 = {q ← p→ r}.

Lemma 5. (3-class ranks of components for I.2.) Under the normalizing assumptions that
q splits in kpr and r splits in kpq, precisely the three components k2, k3, k4 of the quartet have
elementary bicyclic 3-class group Cl3(kµ) ' (3, 3), µ = 2, 3, 4, of rank 2, whereas the remaining
component has 3-class rank %3(k1) = 3. Thus, the tame condition 9 | h3(Bj) = (Uj : Vj) ∈ {9, 27},
rj = 2, is satisfied for the bicyclic bicubic fields Bj with j ∈ {2, 3, 4, 8, 9, 10}.

Proof. p is universally repelling {q ← p → r}. Since p → r, p splits in kr. Since q ← p, p splits

in kq. Thus p also splits in kqr and k̃qr. By the normalizing assumptions that q splits in kpr
and r splits in kpq, the primes p, q, r share the common decomposition type (e, f, g) = (3, 1, 3) in
the bicyclic bicubic field B1 = k1kpqkprkqr, which implies that %3(k1) = 3, according to [2, Prop.

4.4, pp. 43–44]. Finally, none among B2 = k2kpqk̃prk̃qr, B3 = k3k̃pqk̃prkqr, B4 = k4k̃pqkprk̃qr,
B8 = k2k4kpkqr, B9 = k2k3kqkpr, B10 = k3k4krkpq contains k1. �

Proposition 6. (Sub-triplet with 3-rank two for I.2.) For fixed µ ∈ {2, 3, 4}, let p, q, r be the
prime ideals of kµ over p, q, r, that is pOkµ = p3, qOkµ = q3, rOkµ = r3, then the 3-class group of
kµ is generated by the non-trivial classes [q], [r], that is,

(6.9) Cl3(kµ) = 〈[q], [r]〉 ' (3, 3).

The unramified cyclic cubic relative extensions of kµ are among the absolutely bicyclic bicubic
fields Bi, 1 ≤ i ≤ 10.
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In terms of decisive principal factors A(k1) = pxqyrz, x, y, z ∈ {0, 1, 2}, and A(kqr) = qrn,
n ∈ {1, 2}, the ranks of principal factor matrices of wild bicyclic bicubic fields are

(6.10) r5 = 3 iff − z 6≡ ny (mod 3), r6 = 3 iff z 6= 0 iff r | A(k1), r7 = 3 iff y 6= 0 iff q | A(k1).

The field B2 = k2kpqk̃prk̃qr has norm class group NB2/k2(Cl3(B2)) = 〈[r]〉, and transfer kernel

ker(TB2/k2) ≥ 〈[q2rn]〉.

The field B4 = k4k̃pqkprk̃qr has norm class group NB4/k4(Cl3(B2)) = 〈[q]〉, and transfer kernel

ker(TB4/k4) ≥ 〈[q2rn]〉.

The field B9 = k2k3kqkpr, which contains k2 and k3, has norm class group NB9/kµ(Cl3(B9)) =
〈[q]〉, for µ = 2, 3, and possible fixed point transfer kernel

(6.11) ker(TB9/kµ) ≥ 〈[q]〉.

The field B10 = k3k4krkpq, which contains k3 and k4, has norm class group NB10/kµ(Cl3(B10)) =
〈[r]〉, for µ = 3, 4, and possible fixed point transfer kernel

(6.12) ker(TB10/kµ) ≥ 〈[r]〉.

The remaining two Bi > kµ, i ∈ {3, 5, 6, 7, 8}, more precisely, i ∈ {7, 8} for µ = 2, i ∈ {3, 5}
for µ = 3, and i ∈ {6, 8} for µ = 4, have norm class group 〈[qr]〉 respectively 〈[qr2]〉. Among them,
the tame extensions Bi > kµ with either i = µ = 3 or i = 8, µ = 2, 4, have partial transfer kernel

(6.13) ker(TBi/kµ) = 〈[qr]〉

of order 3, giving rise to either a transposition or a fixed point.

Proof. Since p → r, two principal factors are A(kpr) = A(k̃pr) = p; and since q ← p, two further

principal factors are A(kpq) = A(k̃pq) = p, by Proposition 3. Since p is universally repelling
{q ← p→ r}, three further principal factors are A(kµ) = p for 2 ≤ µ ≤ 4, by Proposition 4.

Thus, [p] = 1 is trivial, and the non-trivial classes [q], [r] generate Cl3(kµ) = 〈[q], [r]〉 ' (3, 3).

Since q splits in kpr, it also splits in B4 = k4k̃pqkprk̃qr, B9 = k2k3kqkpr.

Since r splits in kpq, it also splits in B2 = k2kpqk̃prk̃qr, B10 = k3k4krkpq.
Since the tame condition 9 | h3(Bj) = (Uj : Vj) is satisfied for j ∈ {2, 3, 4, 8, 9, 10}, the rank of

the corresponding principal factor matrix Mj must be rj = 2. This can also be verified directly
and has no further consequences.

We propose the principal factors A(k1) = pxqyrz and and A(kqr) = qrn, A(k̃qr) = q2rn with
n ∈ {1, 2}. For each wild bicyclic bicubic field Bj , j ∈ {5, 6, 7}, the rank rj is now calculated with
row operations on the associated principal factor matrices Mj :

M5 =


x y z

1 0 0

1 0 0

0 2 n

, M6 =


x y z

1 0 0

0 1 0

1 0 0

, M7 =


x y z

1 0 0

0 0 1

1 0 0

.

For B5 = k1k3kpk̃qr, M5 leads to the decisive pivot element z + ny in the last column. So,

r5 = 3 iff −z 6≡ ny modulo 3. For B6 = k1k4kqk̃pr, M6 leads to z. So, r6 = 3 iff z 6= 0. For

B7 = k1k2krk̃pq, M7 leads to y in the middle column. So, r7 = 3 iff y 6= 0.

Since q is principal in kq, [q] capitulates in B6 = k1k4kqk̃pr and B9 = k2k3kqkpr, and

since r is principal in kr, [r] capitulates in B7 = k1k2krk̃pq and B10 = k3k4krkpq, by Corollary 3.

Since qrn is principal in kqr, [qrn] capitulates in B3 = k3k̃pqk̃prkqr, B8 = k2k4kpkqr, and

since q2rn is principal in k̃qr, [q2rn] capitulates in B2 = k2kpqk̃prk̃qr, B4 = k4k̃pqkprk̃qr, and

B5 = k1k3kpk̃qr, by Proposition 2.
In each case, the minimal subfield unit index (Uj : Vj) = 3 for rj = 3 corresponds to the maximal

unit norm index (U(kµ) : NBj/kµ(Uj)) = 3, associated to a total transfer kernel # ker(TBj/kµ) = 9,
by Lemma 2.
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The minimal unit norm index (U(kµ) : NB8/kµ(U8)) = 1, associated to the partial transfer
kernel ker(TB8/kµ) = 〈[qr]〉, for µ = 2, 4, corresponds to the tame maximal subfield unit index
h3(B8) = (U8 : V8) = 27, giving rise to type invariants Cl3(B8) ' (9, 3). �

Using Corollary 2, Proposition 6 and parts of its proof are now summarized in Table 6 for the
minimal transfer kernel type (mTKT) and n = 1, with transposition in boldface font.

Table 6. Norm class groups and minimal transfer kernels with n = 1 for Graph I.2

Base k2 k3 k4
Ext B2 B7 B8 B9 B3 B5 B9 B10 B4 B6 B8 B10

NCG r qr2 qr q qr2 qr q r q qr2 qr r

TK qr2 r qr q qr qr2 q r qr2 q qr r

κ 2 1 3 4 2 1 3 4 2 1 3 4

Theorem 11. (Second 3-class group for I.2.) To identify the second 3-class group M =

Gal(F2
3(kµ)/kµ), 2 ≤ µ ≤ 4, let the principal factors of k1, and kqr, respectively k̃qr, be

A(k1) = pxqyrz, x, y, z ∈ {0, 1, 2}, and A(kqr) = qrn, respectively A(k̃qr) = q2rn, n ∈ {1, 2},
and additionally assume the regular situation where Cl3(k1) ' (3, 3, 3).

Then the minimal transfer kernel type (mTKT) κ0 of kµ, 1 ≤ µ ≤ 4, and other possible
capitulation types in ascending partial order κ0 < κ < κ′,κ′′, ending in two non-comparable types,
are κ0 = (2134), type G.16, κ = (0134), type c.21, κ′ = (0004), type a.2, κ′′ = (0100), type a.3,
and the second 3-class group is M '

(6.14)


〈81, 8〉, α = [11, 21, 11, 11], κ = (0100) once if y 6= 0, z 6= 0, N = 1,

〈81, 10〉, α = [11, 11, 11, 21], κ = (0004) twice if y 6= 0, z 6= 0, N = 1,

〈243, 8〉, α = [21, 21, 21, 21], κ = (0134) if y = z = 0, N = 3,

〈729, 52〉, α = [22, 21, 21, 21], κ = (2134) if y = z = 0, N = 4,

where N := #{1 ≤ j ≤ 10 | kµ < Bj , Ij = 27}. Only for the leading three rows, the 3-class field
tower has certainly the group G = Gal(F∞3 (kµ)/kµ) 'M and length `3(kµ) = 2, otherwise length
`3(kµ) ≥ 3 cannot be excluded although d2(M) ≤ 4.

Proof. Let µ ∈ {2, 3, 4}.
The first scenario, y 6= 0, z 6= 0, and −z 6≡ ny modulo 3 is equivalent to N = 1, since rj = 3,

(Uj : Vj) = 3, h3(Bj) = 1
3h3(k1) = 9, for the wild j = 5, 6, 7, and h3(Bj) = (Uj : Vj) = 9, for the

tame j = 2, 4, 9, 10, whereas the distinguished tame j = 3, 8 have h3(Bj) = (Uj : Vj) = 27. This
gives rise to Artin pattern either α = [11, 11, 11, 21] κ = (0004), for j = 8, µ = 2, 4 (twice with
fixed point), characteristic for 〈81, 10〉, or α = [11, 21, 11, 11] κ = (0100), for j = µ = 3 (only once
with non-fixed point, due to a hidden transposition), characteristic for 〈81, 8〉.

The other two scenarios share y = z = 0, and thus also −z = ny, independently of n, which
implies rj = 2, (Uj : Vj) ∈ {9, 27}, for j = 5, 6, 7, and h3(Bj) = (Uj : Vj) = 27, for the tame
j = 2, 4, 9, 10, producing two fixed points at B9 and B10.

The second scenario with N = 3 is supplemented by (Uj : Vj) = 9, h3(Bj) = h3(k1) = 27,
for j = 5, 6, 7, and total capitulation, # ker(TBj/kµ) = 9, for µ = 3, 4, 2. This gives rise to
α = [21, 21, 21, 21], κ = (0134), characteristic for 〈243, 8〉 with annihilator ideal L in the sense of
Scholz and Taussky [23].

The third scenario with N = 4 is supplemented by (Uj : Vj) = 27, h3(Bj) = 3h3(k1) = 81,
for j = 5, 6, 7 and partial non-fixed point capitulation. This gives rise to α = [22, 21, 21, 21],
κ = (2134), characteristic for 〈729, 52〉 with non-metabelian descendants. Here, the hidden trans-
position becomes explicit, between either B2, B7 or B3, B5 or B4, B6. �

Corollary 6. (Non-uniformity of the sub-triplet for I.2.) The components of the sub-triplet
with 3-rank two share a common capitulation type κ(kµ), common abelian type invariants α(kµ),
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and a common second 3-class group Gal(F2
3(kµ)/kµ), for µ = 2, 3, 4, only if y = z = 0, N = 3, 4.

For y 6= 0, z 6= 0, N = 1, however, only two fields k2 and k4 share common invariants, whereas
k3 has different κ(k3) and different Gal(F2

3(k3)/k3).

Proof. This follows immediately from Theorem 11, whereas Table 6 with minimal transfer kernel
type κ0 = (2134) only shows the uniform situation, which can become non-uniform by superposi-
tion with total transfer kernels, when N = 1. �

Example 2. Prototypes for Graph I.2, i.e., minimal conductors for each scenario in Theorem 11
have been found for each N ∈ {1, 3, 4}.

Some are regular: c = 8 001 with symbol {9← 127→ 7} and, non-uniformly, once G = M =
〈81, 8〉 but twice 〈81, 10〉2; c = 21 049 with symbol {7 ← 97 → 31} and uniformly three times
G = M = 〈243, 8〉3; and c = 59 031 with symbol {9← 937→ 7} and M = 〈729, 52〉3.

Others are singular: c = 7 657 with symbol {13 ← 31 → 19} and G = M = 〈243, 8〉3; and
c = 48 393 with symbol {9← 19→ 283} and M = 〈2187, 301|305〉3.

The groups of order ≥ 729 with transfer kernel type G.16 have non-metabelian extensions.

In Table 7, we summarize the prototypes of Graph I.2 in the same way as in Table 5, except
that two critical exponents y, z in principal factor A(k1) = pxqyrz and n in A(kqr) = qrn are
sufficient.

Table 7. Prototypes for Graph I.2

No. c q ← p→ r v y, z;n capitulation type M `3(k)

1 7 657 13← 31→ 19 4 1, 1; 2 c.21 〈243, 8〉3 = 2

2 8 001 9← 127→ 7 3 1, 2; 1 a.3, a.2 〈81, 8〉, 〈81, 10〉2 = 2

12 21 049 7← 97→ 31 3 0, 0; 1 c.21 〈243, 8〉3 = 2

27 48 393 9← 19→ 283 4 0, 0; 2 G.16 〈2187, 301|305〉3 ≥ 2

33 59 031 9← 937→ 7 3 0, 0; 1 G.16 〈729, 52〉3 ≥ 2

6.3. Category II, Graph 1. Let (k1, . . . , k4) be a quartet of cyclic cubic number fields sharing
the common conductor c = pqr, belonging to Graph 1 of Category II with combined cubic residue
symbol [p, q, r]3 = {p→ q ← r}.

Lemma 6. (3-class ranks of components for II.1.) Under the normalizing assumption that

q splits in k̃pr, precisely the two components k2 and k3 of the quartet have elementary bicyclic
3-class group Cl3(k2) ' Cl3(k3) ' (3, 3) of rank 2, whereas the other two components have 3-class
rank %3(k1) = %3(k4) = 3. Thus, the tame condition 9 | h3(Bj) = (Uj : Vj) ∈ {9, 27}, rj = 2, is
only satisfied for the bicyclic bicubic fields Bj with j ∈ {2, 3, 9}.

Proof. Since p → q, p splits in kq. Since q ← r, r splits in kq, and also splits in B9 = k2k3kqkpr.

By the normalizing assumption that q splits in k̃pr, it also splits in B2 = k2kpqk̃prk̃qr and B3 =

k3k̃pqk̃prkqr. The primes p, q, r share the common decomposition type (e, f, g) = (3, 1, 3) in the

bicyclic bicubic field B6 = k1k4kqk̃pr, which implies that %3(k1) = %3(k4) = 3, according to [2,

Prop. 4.4, pp. 43–44]. Finally, only B2 = k2kpqk̃prk̃qr, B3 = k3k̃pqk̃prkqr, B9 = k2k3kqkpr do not
contain k1, k4. �

Proposition 7. (Sub-doublet with 3-rank two for II.1.) For fixed µ ∈ {2, 3}, let p, q, r be the
prime ideals of kµ over p, q, r, that is pOkµ = p3, qOkµ = q3, rOkµ = r3, then the 3-class group of
kµ is generated by the non-trivial classes [q], [r], that is,

(6.15) Cl3(kµ) = 〈[q], [r]〉 ' (3, 3).

The unramified cyclic cubic relative extensions of kµ are among the absolutely bicyclic bicubic
fields Bi, 1 ≤ i ≤ 10. The unique Bµ, µ ∈ {2, 3}, which only contains kµ, has norm class group
NBµ/kµ(Cl3(Bµ)) = 〈[q]〉, transfer kernel

ker(TBµ/kµ) ≥ 〈[r]〉
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and 3-class group Cl3(Bµ) = 〈[Q1], [Q2], [Q3]〉 ≥ (3, 3), generated by the classes of the prime ideals
of Bµ over qOBµ = Q1Q2Q3. The unique B9 = k2k3kqkpr, which contains k2 and k3, has norm
class group NB9/kµ(Cl3(B9)) = 〈[r]〉, cyclic transfer kernel

(6.16) ker(TB9/kµ) = 〈[q]〉

of order 3, and elementary tricyclic 3-class group Cl3(B9) = 〈[R1], [R2], [R3]〉 ' (3, 3, 3), gen-
erated by the classes of the prime ideals of B9 over rOB9

= R1R2R3. The remaining two Bi > kµ,
i ∈ {5, 7, 8, 10}, more precisely, i ∈ {7, 8} for µ = 2, and i ∈ {5, 10} for µ = 3, have norm class
group 〈[qr]〉 respectively 〈[qr2]〉, and transfer kernel

ker(TBi/kµ) ≥ 〈[r]〉.

In terms of decisive principal factors A(kν) = pxν qyνrzν for ν ∈ {1, 4}, the ranks of principal
factor matrices Mi, i ∈ {1, 4, 5, 7, 8, 10}, of wild bicyclic bicubic fields are

(6.17) r1 = r5 = r7 = 3 iff y1 6= 0 iff q | A(k1) and r4 = r8 = r10 = 3 iff y4 6= 0 iff q | A(k4).

Proof. Since p → q, two principal factors are A(kpq) = A(k̃pq) = p; since q ← r, two further

principal factors are A(kqr) = A(k̃qr) = r; both by Proposition 3.
Since the tame condition 9 | h3(Bj) = (Uj : Vj) is satisfied for j ∈ {2, 3, 9}, the rank of the

corresponding principal factor matrix Mj must be r2 = r3 = r9 = 2. We propose principal factors

A(kµ) = pxµqyµrzµ , for all 1 ≤ µ ≤ 4, and A(kpr) = pr`, A(k̃pr) = p2r` with ` ∈ {1, 2}.
For each bicyclic bicubic field Bj , the rank rj is calculated with row operations on the associated

principal factor matrices Mj :

M2 =


x2 y2 z2
1 0 0

2 0 `

0 0 1

, M3 =


x3 y3 z3
1 0 0

2 0 `

0 0 1

, M9 =


x2 y2 z2
x3 y3 z3
0 1 0

1 0 `

.

For B2 = k2kpqk̃prk̃qr, M2 leads to the decisive pivot element y2 in the middle column, and

similarly, for B3 = k3k̃pqk̃prkqr, M3 leads to y3. So, r2 = r3 = 2 enforces y2 = y3 = 0, i.e.,
q - A(k2), q - A(k3). However, for B9 = k2k3kqkpr, M9 leads to z2 − `x2 and z3 − `x3. So, r9 = 2
enforces z2 ≡ `x2 and z3 ≡ `x3 modulo 3, i.e., A(k2) = A(k3) = pr`.

For every wild bicyclic bicubic field Bj , j ∈ {1, 4, 5, 6, 7, 8, 10}, the rank rj is calculated by row
operations on the matrices Mj , using A(k2) = A(k3) = pr`:

M1 =


x1 y1 z1
1 0 0

1 0 `

0 0 1

, M5 =


x1 y1 z1
1 0 `

1 0 0

0 0 1

, M7 =


x1 y1 z1
1 0 `

0 0 1

1 0 0

.

For B1 = k1kpqkprkqr, M1 leads to the decisive pivot element y1 in the middle column, similarly,

for B5 = k1k3kpk̃qr, M5 leads to y1, and similarly, for B7 = k1k2krk̃pq, M7 leads to y1. So,
r1 = r5 = r7 = 3 iff y1 6= 0 iff q | A(k1). Next we consider:

M4 =


x4 y4 z4
1 0 0

1 0 `

0 0 1

, M8 =


1 0 `

x4 y4 z4
1 0 0

0 0 1

, M10 =


1 0 `

x4 y4 z4
0 0 1

1 0 0

.

For B4 = k4k̃pqkprk̃qr, M4 leads to the decisive pivot element y4 in the middle column, similarly,
for B8 = k2k4kpkqr, M8 leads to y4, and similarly, for B10 = k3k4krkpq, M10 leads to y4. So,
r4 = r8 = r10 = 3 iff y4 6= 0 iff q | A(k4).

By Lemma 2, the minimal subfield unit index (Uj : Vj) = 3 for rj = 3 corresponds to
the maximal unit norm index (U(kµ) : NBj/kµ(Uj)) = 3, associated to a total transfer kernel
# ker(TBj/kµ) = 9.

Since q splits in k̃pr, it also splits in B2 = k2kpqk̃prk̃qr, B3 = k3k̃pqk̃prkqr, qOBµ = Q1Q2Q3.
Since r splits in kq, it also splits in B9 = k2k3kqkpr, rOB9

= R1R2R3.
.
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Since r is principal in kr, kqr, k̃qr, [r] capitulates in B2 = k2kpqk̃prk̃qr, B3 = k3k̃pqk̃prkqr,

B5 = k1k3kpk̃qr, B7 = k1k2krk̃pq, B8 = k2k4kpkqr, B10 = k3k4krkpq; since q is principal in kq, [q]
capitulates in B9 = k2k3kqkpr (Proposition 2). This gives a transposition, either (2, 9) or (3, 9).

The minimal unit norm index (U(kµ) : NB9/kµ(U9)) = 1, associated to the partial transfer kernel
ker(TB9/kµ) = 〈[q]〉, corresponds to the maximal subfield unit index h3(B9) = (U9 : V9) = 27,
giving rise to the elementary tricyclic type invariants Cl3(B9) = 〈[R1], [R2], [R3]〉 ' (3, 3, 3). �

Using Corollary 2, Proposition 7 and parts of its proof are now summarized in Table 8 with
transposition in bold font.

Table 8. Norm class groups and minimal transfer kernels for Graph II.1

Base k2 k3
Ext B2 B7 B8 B9 B3 B5 B9 B10

NCG q qr qr2 r q qr2 r qr

TK r r r q r r q r

κ 4 4 4 1 3 3 1 3

Theorem 12. (Second 3-class group for II.1.) Let (k1, . . . , k4) be a quartet of cyclic cubic
number fields sharing the common conductor c = pqr, belonging to Graph 1 of Category II with
combined cubic residue symbol [p, q, r]3 = {p→ q ← r}. Without loss of generality, suppose that q

splits in k̃pr, and thus Cl3(k2) ' Cl3(k3) ' (3, 3), and %3(k1) = %3(k4) = 3.
Then the minimal transfer kernel type (mTKT) of kµ, 2 ≤ µ ≤ 3, is κ0 = (2111), type H.4,

and the other possible capitulation types in ascending order κ0 < κ′ < κ′′ < κ′′′ are κ′ = (2110),
type d.19, κ′′ = (2100), type b.10, and κ′′′ = (2000), type a.3∗.

To identify the second 3-class group M = Gal(F2
3(kµ)/kµ), 2 ≤ µ ≤ 3, let the decisive prin-

cipal factors of kν , ν ∈ {1, 4}, be A(kν) = pxν qyνrzν , and additionally assume the regular
situation where both Cl3(k1) ' Cl3(k4) ' (3, 3, 3) are elementary tricyclic. Then

(6.18) M '



〈81, 7〉, α = [111, 11, 11, 11], κ = (2000) if y1 6= 0, y4 6= 0, N = 1,

〈729, 34..39〉, α = [111, 111, 21, 21], κ = (2100) if y1 = y4 = 0, N = 2,

〈729, 41〉, α = [111, 111, 22, 21], κ = (2110) if y1 = y4 = 0, N = 3,

〈6561, 714..719|738..743〉 or

〈2187, 65|67〉, α = [111, 111, 22, 22], κ = (2111) if y1 = y4 = 0, N = 4,

where N := #{1 ≤ j ≤ 10 | kµ < Bj , Ij = 27}. Only in the leading row, the 3-class field tower
has warranted group G = Gal(F∞3 (kµ)/kµ) 'M, with length `3(kµ) = 2. Otherwise, although the
relation rank d2(M) ≤ 4 is always admissible, tower length `3(kµ) ≥ 3 cannot be excluded.

Proof. We give the proof for k3 with unramified cyclic cubic extensions B3, B5, B9, B10, (The proof
for k2 with unramified cyclic cubic extensions B2, B7, B8, B9 is similar.) We know that the tame
ranks are r2 = r3 = r9 = 2, and thus I2, I3, I9 ∈ {9, 27}, in particular, I9 = 27, whence certainly
N ≥ 1. Further, the wild ranks are r1 = r5 = r7 = 3 iff y1 6= 0, and r4 = r8 = r10 = 3 iff y4 6= 0.

In the regular situation where the 3-class groups of k1 and k4 are elementary tricyclic, tight
bounds arise for the abelian quotient invariants α of the group M:

The first scenario, y1 6= 0, y4 6= 0, is equivalent to N = 1, h3(B5) = h3(B7) = 1
3h3(k1) = 9,

h3(B8) = h3(B10) = 1
3h3(k4) = 9, h3(B2) = I2 = h3(B3) = I3 = 9, h3(B9) = I9 = 27, that is

α = [111, 11, 11, 11] and consequently κ = (2000), since 〈81, 7〉 is unique with this α.
The other three scenarios share y1 = y4 = 0, and an explicit transposition between B3 and B9,

giving rise to κ = (21 ∗ ∗), and common h3(B3) = I3 = 27, α = [111, 111, ∗, ∗].
The second scenario with N = 2 is supplemented by h3(B5) = h3(k1) = 27, h3(B10) = h3(k4) =

27, giving rise to α = [111, 111, 21, 21], κ = (2100), characteristic for 〈729, 34..39〉 (Cor. 4).
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The third scenario with N = 3 is supplemented by h3(B5) = 3h3(k1) = 81, h3(B10) = h3(k4) =
27, giving rise to α = [111, 111, 22, 21], κ = (2110), characteristic for 〈729, 41〉.

The fourth scenario with N = 4 is supplemented by h3(B5) = 3h3(k1) = 81, h3(B10) =
3h3(k4) = 81, giving rise to α = [111, 111, 22, 22], κ = (2111), characteristic for either 〈2187, 65|67〉
or 〈6561, 714..719|738..743〉 with coclass cc = 3. If d2(M) = 5, then tower length must be `3(kµ) ≥
3. For this minimal capitulation type H.4, κ = (2111), all transfer kernels are cyclic of order 3,
and the minimal unit norm indices correspond to maximal subfield unit indices. �

Corollary 7. (Uniformity of the sub-doublet for II.1.) The components of the sub-doublet
with 3-rank two share a common capitulation type κ(k2) ∼ κ(k3), common abelian type invariants
α(k2) ∼ α(k3), and a common second 3-class group Gal(F2

3(k2)/k2) ' Gal(F2
3(k3)/k3).

Proof. This is an immediate consequence of Theorem 12 and Table 8. �

Example 3. Prototypes for Graph II.1, i.e., minimal conductors for each scenario in Theorem 12
have been detected for all N ∈ {1, 2, 3, 4}.

There are regular cases: c = 3 913 with symbol {13 → 7 ← 43} and G = M = 〈81, 7〉;
c = 22 581 with symbol {9 → 193 ← 13} and M = 〈729, 41〉; c = 25 929 with symbol {9 →
67 ← 43} and M = 〈729, 34..36〉 (Corollary 4); c = 74 043 with symbol {19 → 9 ← 433} and
either M = 〈2187, 65|67〉 with d2(M) = 5 or M = 〈6561, 714..719|738..743〉 with d2(M) = 4; and
c = 82 327 with symbol {7→ 19← 619} and M = 〈729, 37..39〉 (Corollary 4).

We also have singular cases: c = 30 457 with symbol {7 → 19 ← 229} and M = 〈729, 37..39〉
(Corollary 4); c = 34 029 with symbol {19→ 9← 199} and M = 〈2187, 248|249〉; c = 41 839 with
symbol {43→ 7← 139} and M = 〈6561, 693..698〉.

Finally, there is the super-singular c = 83 817 with symbol {9 → 67 ← 139} and M =
〈6561, 693..698〉.

With exception of 〈81, 7〉, all groups have non-metabelian descendants, respectively extensions.

In Table 9, we summarize the prototypes of Graph II.1 in the same manner as in Table 5,
except that regularity, resp. (super-)singularity, is expressed by 3-valuations vν = v3(#Cl(kν))
of class numbers of critical fields kν , ν = 1, 4, and critical exponents are yν in principal factors
A(kν) = pxν qyνrzν , ν = 1, 4.

Table 9. Prototypes for Graph II.1

No. c p→ q ← r v1, v4 y1, y4 capitulation type M `3(k)

1 3 913 13→ 7← 43 3, 3 1, 1 a.3∗ 〈81, 7〉2 = 2

9 22 581 9→ 193← 13 3, 3 0, 0 d.19 〈729, 41〉2 ≥ 2

11 25 929 9→ 67← 43 3, 3 0, 0 b.10 〈729, 34..36〉2 ≥ 2

15 30 457 7→ 19← 229 4, 4 1, 1 b.10 〈729, 37..39〉2 ≥ 2

18 34 029 19→ 9← 199 4, 4 1, 0 d.19 〈2187, 248|249〉2 ≥ 2

23 41 839 43→ 7← 139 4, 4 0, 0 b.10 〈6561, 693..698〉2 ≥ 2

35 74 043 19→ 9← 433 3, 3 0, 0 H.4 〈2187, 65|67〉2 ≥ 3

or 〈6561, 714..719|738..743〉 ≥ 2

39 82 327 7→ 19← 619 3, 3 0, 0 b.10 〈729, 37..39〉2 ≥ 2

42 83 817 9→ 67← 139 5, 4 0, 1 b.10 〈6561, 693..698〉2 ≥ 2

6.4. Category II, Graph 2. Let (k1, . . . , k4) be a quartet of cyclic cubic number fields sharing
the common conductor c = pqr, belonging to Graph 2 of Category II with combined cubic residue
symbol [p, q, r]3 = {q ← p→ r ← q}.

Lemma 7. (3-class ranks of components for II.2.) Under the normalizing assumption that
r splits in kpq, precisely the two components k1 and k2 of the quartet have elementary bicyclic
3-class group Cl3(k1) ' Cl3(k2) ' (3, 3) of rank 2, whereas the other two components have 3-class
rank %3(k3) = %3(k4) = 3. Thus, the tame condition 9 | h3(Bj) = (Uj : Vj) ∈ {9, 27}, rj = 2, is
only satisfied for the bicyclic bicubic fields Bj with j ∈ {1, 2, 7}.
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Proof. Since p → r, p splits in kr. Since r ← q, q splits in kr, and also splits in B7 = k1k2krk̃pq.
By the normalizing assumption that r splits in kpq, it also splits in B1 = k1kpqkprkqr and B2 =

k2kpqk̃prk̃qr. The primes p, q, r share the common decomposition type (e, f, g) = (3, 1, 3) in the
bicyclic bicubic field B10 = k3k4krkpq, which implies that %3(k3) = %3(k4) = 3, according to [2,

Prop. 4.4, pp. 43–44]. Finally, only B1 = k1kpqkprkqr, B2 = k2kpqk̃prk̃qr, B7 = k1k2krk̃pq do not
contain k3, k4. �

Proposition 8. (Sub-doublet with 3-rank two for II.2.) For fixed µ ∈ {1, 2}, let p, q, r be
the prime ideals of kµ over p, q, r, that is pOkµ = p3, qOkµ = q3, rOkµ = r3, then the principal
factor of kµ is A(kµ) = p, with [p] = 1, and the 3-class group of kµ is

(6.19) Cl3(kµ) = 〈[q], [r]〉 ' (3, 3).

The unramified cyclic cubic relative extensions of kµ are among the absolutely bicyclic bicubic
fields Bi, 1 ≤ i ≤ 10. The unique Bµ, µ ∈ {1, 2}, which only contains kµ, has norm class group
NBµ/kµ(Cl3(Bµ)) = 〈[r]〉, transfer kernel

ker(TBµ/kµ) ≥ 〈[q]〉
and 3-class group Cl3(Bµ) = 〈[R1], [R2], [R3]〉 ≥ (3, 3), generated by the classes of the prime ideals

of Bµ over rOBµ = R1R2R3. The unique B7 = k1k2krk̃pq, which contains k1 and k2, has norm
class group NB7/kµ(Cl3(B7)) = 〈[q]〉, cyclic transfer kernel

(6.20) ker(TB7/kµ) = 〈[r]〉
of order 3, and elementary tricyclic 3-class group Cl3(B7) = 〈[Q1], [Q2], [Q3]〉 ' (3, 3, 3), gen-
erated by the classes of the prime ideals of B7 over qOB7

= Q1Q2Q3. The remaining two Bi > kµ,
i ∈ {5, 6, 8, 9}, more precisely, i ∈ {5, 6} for µ = 1, and i ∈ {8, 9} for µ = 2, have norm class
group 〈[qr]〉 respectively 〈[qr2]〉, and transfer kernel

ker(TBi/kµ) ≥ 〈[q]〉.
In terms of decisive principal factors A(kν) = pxν qyνrzν for ν ∈ {3, 4}, the ranks of principal
factor matrices Mi, i ∈ {3, 4, 5, 6, 8, 9}, of wild bicyclic bicubic fields are

(6.21) r3 = r5 = r9 = 3 iff z3 6= 0 iff r | A(k3) and r4 = r6 = r8 = 3 iff z4 6= 0 iff r | A(k4).

Proof. Since q ← p, two principal factors are A(kpq) = A(k̃pq) = p; since p → r, two further

principal factors are A(kpr) = A(k̃pr) = p; since r ← q, two further principal factors are A(kqr) =

A(k̃qr) = q; each by Proposition 3. Since q ← p → r is universally repelling, we have A(k1) =
A(k2) = p, by Proposition 4.

Thus p = αOkµ is a principal ideal with trivial class [p] = 1, for µ ∈ {1, 2}, whereas the classes
[q], [r] are non-trivial. We propose A(kν) = pxν qyνrzν for ν ∈ {3, 4}.

Since the tame condition 9 | h3(Bj) = (Uj : Vj) is satisfied for j ∈ {1, 2, 7}, the rank of the
corresponding principal factor matrix Mj must be r1 = r2 = r7 = 2. Due to the principal factors
A(k1) = A(k2) = p, this also follows by direct calculation, but has no further consequences. For
every wild bicyclic bicubic field Bj , j ∈ {3, 4, 5, 6, 8, 9, 10}, the rank rj is calculated with row
operations on the associated principal factor matrices Mj :

M3 =


x3 y3 z3
1 0 0

1 0 0

0 1 0

, M5 =


1 0 0

x3 y3 z3
1 0 0

0 1 0

, M9 =


1 0 0

x3 y3 z3
0 1 0

1 0 0

.

For B3 = k3k̃pqk̃prkqr, M3 leads to the decisive pivot element z3 in the last column, similarly,

for B5 = k1k3kpk̃qr, M5 leads to z3, and similarly, for B9 = k2k3kqkpr, M9 leads to z3. So,
r3 = r5 = r9 = 3 iff z3 6= 0 iff r | A(k3). Next we consider:

M4 =


x4 y4 z4
1 0 0

1 0 0

0 1 0

, M6 =


1 0 0

x4 y4 z4
0 1 0

1 0 0

, M8 =


1 0 0

x4 y4 z4
1 0 0

0 1 0

.
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For B4 = k4k̃pqkprk̃qr, M4 leads to the decisive pivot element z4 in the last column, similarly,

for B6 = k1k4kqk̃pr, M6 leads to z4, and similarly, for B8 = k2k4kpkqr, M8 leads to z4. So,
r4 = r6 = r8 = 3 iff z4 6= 0 iff r | A(k4).

By Lemma 2, the minimal subfield unit index (Uj : Vj) = 3 for rj = 3 corresponds to
the maximal unit norm index (U(kµ) : NBj/kµ(Uj)) = 3, associated to a total transfer kernel
# ker(TBj/kµ) = 9.

As mentioned in the proof of Lemma 7 already:
Since r splits in kpq, it also splits in B1 = k1kpqkprkqr, B2 = k2kpqk̃prk̃qr, i.e., rOBµ = R1R2R3.

Since q splits in kr, it also splits in B7 = k1k2krk̃pq, i.e., qOB7 = Q1Q2Q3.

Since q is principal in kq, kqr, k̃qr, [q] capitulates in B1 = k1kpqkprkqr, B2 = k2kpqk̃prk̃qr,

B5 = k1k3kpk̃qr, B6 = k1k4kqk̃pr, B8 = k2k4kpkqr, B9 = k2k3kqkpr; since r is principal in kr, [r]

capitulates in B7 = k1k2krk̃pq (Proposition 2). This gives a transposition, either (1, 7) or (2, 7).
The minimal unit norm index (U(kµ) : NB7/kµ(U7)) = 1, associated to the partial transfer kernel

ker(TB7/kµ) = 〈[r]〉, corresponds to the maximal subfield unit index h3(B7) = (U7 : V7) = 27,
giving rise to the elementary tricyclic type invariants Cl3(B7) = 〈[Q1], [Q2], [Q3]〉 ' (3, 3, 3). �

In terms of capitulation targets in Corollary 2, Proposition 8 and parts of its proof are now
summarized in Table 10 with transposition in bold font.

Table 10. Norm class groups and minimal transfer kernels for Graph II.2

Base k1 k2
Ext B1 B5 B6 B7 B2 B7 B8 B9

NCG r qr qr2 q r q qr qr2

TK q q q r q r q q

κ 4 4 4 1 2 1 2 2

Theorem 13. (Second 3-class group for II.2.) Let (k1, . . . , k4) be a quartet of cyclic cubic
number fields sharing the common conductor c = pqr, belonging to Graph 2 of Category II with
combined cubic residue symbol [p, q, r]3 = {q ← p → r ← q}. Without loss of generality, suppose
that r splits in kpq, and thus Cl3(k1) ' Cl3(k2) ' (3, 3), and %3(k3) = %3(k4) = 3.

Then the minimal transfer kernel type (mTKT) of kµ, 1 ≤ µ ≤ 2, is κ0 = (2111), type H.4,
and the other possible capitulation types in ascending order κ0 < κ′ < κ′′ < κ′′′ are κ′ = (2110),
type d.19, κ′′ = (2100), type b.10, and κ′′′ = (2000), type a.3∗.

To identify the second 3-class group M = Gal(F2
3(kµ)/kµ), 1 ≤ µ ≤ 2, let the decisive principal

factors of kν , 3 ≤ ν ≤ 4, be A(kν) = pxν qyνrzν , and additionally assume the regular situation
where both Cl3(k3) ' Cl3(k4) ' (3, 3, 3) are elementary tricyclic. Then

(6.22) M '



〈81, 7〉, α = [111, 11, 11, 11], κ = (2000) if z3 6= 0, z4 6= 0, N = 1,

〈729, 34..39〉, α = [111, 111, 21, 21], κ = (2100) if z3 = z4 = 0, N = 2,

〈729, 41〉, α = [111, 111, 22, 21], κ = (2110) if z3 = z4 = 0, N = 3,

〈6561, 714..719|738..743〉 or

〈2187, 65|67〉, α = [111, 111, 22, 22], κ = (2111) if z3 = z4 = 0, N = 4,

where N := #{1 ≤ j ≤ 10 | kµ < Bj , Ij = 27}. Only in the leading row, the 3-class field tower
has warranted group G = Gal(F∞3 (kµ)/kµ) ' M, with length `3(kµ) = 2. Otherwise, even if the
relation rank d2(M) ≤ 4 is admissible, tower length `3(kµ) ≥ 3 cannot be excluded.

Proof. We give the proof for k1 with unramified cyclic cubic extensions B1, B5, B6, B7, (The proof
for k2 with unramified cyclic cubic extensions B2, B7, B8, B9 is similar.) We know that the tame
ranks are r1 = r2 = r7 = 2, and thus I1, I2, I7 ∈ {9, 27}, in particular, I7 = 27, whence certainly
N ≥ 1. Further, the wild ranks are r4 = r6 = r8 = 3 iff z4 6= 0, and r3 = r5 = r9 = 3 iff z3 6= 0.



26 SIHAM AOUISSI AND DANIEL C. MAYER

In the regular situation where the 3-class groups of k3 and k4 are elementary tricyclic, tight
bounds arise for the abelian quotient invariants α of the group M:

The first scenario, z3 6= 0, z4 6= 0, is equivalent to N = 1, h3(B5) = h3(B9) = 1
3h3(k3) = 9,

h3(B6) = h3(B8) = 1
3h3(k4) = 9, h3(B1) = I1 = h3(B2) = I2 = 9, h3(B7) = I7 = 27, that is

α = [111, 11, 11, 11] and consequently κ = (2000), since 〈81, 7〉 is unique with this α.
The other three scenarios share z3 = z4 = 0, and an explicit transposition between B1 and B7,

giving rise to κ = (21 ∗ ∗), and common h3(B1) = I1 = 27, α = [111, 111, ∗, ∗].
The second scenario with N = 2 is supplemented by h3(B5) = h3(k3) = 27, h3(B6) = h3(k4) =

27, giving rise to α = [111, 111, 21, 21], κ = (2100), characteristic for 〈729, 34..39〉 (Cor. 4).
The third scenario with N = 3 is supplemented by h3(B5) = 3h3(k3) = 81, h3(B6) = h3(k4) =

27, giving rise to α = [111, 111, 22, 21], κ = (2110), characteristic for 〈729, 41〉.
The fourth scenario with N = 4 is supplemented by h3(B5) = 3h3(k3) = 81, h3(B6) =

3h3(k4) = 81, giving rise to α = [111, 111, 22, 22], κ = (2111), characteristic for 〈2187, 65|67〉
or 〈6561, 714..719|738..743〉 with coclass cc = 3. If d2(M) = 5, then `3(kµ) ≥ 3. �

Corollary 8. (Uniformity of the sub-doublet for II.2.) The components of the sub-doublet
with 3-rank two share a common capitulation type κ(k1) ∼ κ(k2), common abelian type invariants
α(k1) ∼ α(k2), and a common second 3-class group Gal(F2

3(k1)/k1) ' Gal(F2
3(k2)/k2).

Proof. This follows immediately from Theorem 13 and Table 10. �

Example 4. Prototypes for Graph II.2, i.e., minimal conductors for each scenario in Theorem 13
have been found for each N ∈ {1, 2, 3, 4}.

There are regular cases: c = 6 327 with symbol {19 → 9 ← 37 → 19} and G = M = 〈81, 7〉;
c = 41 629 with symbol {19 → 313 ← 7 → 19} and M = 〈729, 34..36〉 (Corollary 4); c = 56 547
with symbol {61→ 103← 9→ 61} and M = 〈729, 41〉; and, with considerable statistic delay,
c = 389 329 with ordinal number 207, symbol {19→ 661← 31→ 19} and either M = 〈2187, 65|67〉
with d2(M) = 5 or M = 〈6561, 714..719|738..743〉 with d2(M) = 4.

Further, there are singular cases: c = 27 873 with symbol {19 → 9 ← 163 → 19} and M =
〈729, 34..36〉 (Corollary 4); c = 29 197 with symbol {43 → 7 ← 97 → 43} and M = 〈2187, 253〉;
and c = 63 511 with symbol {43→ 7← 211→ 43} and M = 〈729, 37..39〉 (Corollary 4).

Finally, there is the super-singular c = 66 157 with symbol {13 → 7 ← 727 → 13} and
M = 〈6561, 1989〉.

With exception of 〈81, 7〉, all groups have non-metabelian descendants, respectively extensions.

In Table 11, we summarize the prototypes of Graph II.2 in the same way as in Table 5, except
that regularity, resp. (super-)singularity, is expressed by 3-valuations vν = v3(#Cl(kν)) of class
numbers of critical fields kν , ν = 3, 4, and critical exponents are zν in principal factors A(kν) =
pxν qyνrzν , ν = 3, 4.

Table 11. Prototypes for Graph II.2

No. c q → r ← p→ q v3, v4 z3, z4 capitulation type M `3(k)

1 6 327 19→ 9← 37→ 19 3, 3 1, 1 a.3∗ 〈81, 7〉2 = 2

8 27 873 19→ 9← 163→ 19 4, 4 1, 1 b.10 〈729, 34..36〉2 ≥ 2

10 29 197 43→ 7← 97→ 43 4, 4 0, 1 b.10 〈2187, 253〉2 ≥ 3

14 41 629 19→ 313← 7→ 19 3, 3 0, 0 b.10 〈729, 34..36〉2 ≥ 2

23 56 547 61→ 103← 9→ 61 3, 3 0, 0 d.19 〈729, 41〉2 ≥ 2

28 63 511 43→ 7← 211→ 43 4, 4 1, 1 b.10 〈729, 37..39〉2 ≥ 2

31 66 157 13→ 7← 727→ 13 5, 4 1, 0 d.19 〈6561, 1989〉2 ≥ 2

207 389 329 19→ 661← 31→ 19 3, 3 0, 0 H.4 〈2187, 65|67〉2 ≥ 3

or 〈6561, 714..719|738..743〉 ≥ 2

7. Category III, Graphs 1–4

Let the combined cubic residue symbol [p, q, r]3 of three prime(power)s dividing the conductor
c = pqr be either {p, q, r; δ 6≡ 0 (mod 3)} or {p→ q; r} or {p→ q → r} or {p→ q → r → p}. The
symbol does not contain any mutual cubic residues. We verify a conjecture in [20, Cnj. 1, p. 48].
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Theorem 14. A cyclic cubic field k with conductor c = pqr, divisible by exactly three prime(power)s
p, q, r, has an abelian 3-class field tower with group G = Gal(F∞3 (k)/k) ' 〈9, 2〉, α = [1, 1, 1, 1],
κ = (0000), if and only if the primes p, q, r form one of the four Graphs 1–4 of Category III.

Proof. Ayadi [2, Thm. 4.1, pp. 76–77] has proved the sufficiency of the condition. He does not
claim explicitly that the condition is also necessary. However, his techniques are able to prove
both directions. Recall that for both Graphs 1–2 of the Categories I and II, there is at least one
component of the quartet (kµ)4µ=1 with 3-class rank %(kµ) = 3, and that for all Graphs 5–9 of
Category III, two primes p ↔ q are mutual cubic residues, according to Theorem 2. In contrast,
precisely for the Graphs 1–4 of Category III, the symbol [p, q, r]3 does not contain any mutual
cubic residues, and all four components have 3-class rank %(kµ) = 2 and elementary bicyclic 3-
class group Cl3(kµ) ' (3, 3), whence these are the only cases where all bicyclic bicubic fields Bj ,
1 ≤ j ≤ 10, satisfy the tame relation h3(Bj) = (Uj : Vj) = 3 with matrix rank rj = 3. This is
equivalent with abelian type invariants α(kµ) = [1, 1, 1, 1] for all 1 ≤ µ ≤ 4. By the strategy of
pattern recognition [19], this enforces the abelian group G ' 〈9, 2〉 ' (3, 3), which is the unique
3-group G with G/G′ ' (3, 3) and abelian quotient invariants α(G) = [1, 1, 1, 1]. �

For the prototypes of Graphs 1, . . . , 4 of Category III see [20, Tbl. 6.3, p. 48]. Systematic tables
have been presented at http://www.algebra.at/ResearchFrontier2013ThreeByThree.htm in
sections §§ 2.1–2.2.

8. Category III, Graphs 5–9

In this section, the combined cubic residue symbol [p, q, r]3 of three prime(power)s dividing the
conductor c = pqr contains a unique pair p↔ q of mutual cubic residues.

Consequently, the decisive principal factors

(8.1) A(kpq) = pmqn, A(k̃pq) = pm̃qñ

must be assumed with variable exponents in {0, 1, 2}, such that (m,n) 6= (0, 0) and (m̃, ñ) 6= (0, 0).
Concerning 3-class groups of cyclic cubic subfields k < k∗ with t = 2, an elementary cyclic group
Cl3(k) ' (3) is warranted for k ∈ {kpr, k̃pr, kqr, k̃qr}. For the critical fields k ∈ {kpq, k̃pq}, however,
we must distinguish the regular situation Cl3(k∗f ) ' (3, 3) in terms of the sub-genus field k∗f =

kpq · k̃pq with partial conductor f = pq which divides c = pqr, where Cl3(kpq) ' Cl3(k̃pq) ' (3, 3)
and equality (m,n) = (m̃, ñ) is warranted, as opposed to the singular situation Cl3(k∗f ) ' (3, 3, 3),

and the super-singular situation 81 | h3(k∗f ), where usually Cl3(kpq) ' Cl3(k̃pq) ' (9, 3).

For doublets (kpq, k̃pq) with conductor f = pq and non-elementary bicyclic 3-class group, a
distinction arises from the 3-valuation v∗ := v3(h(k∗f )) of the class number of the 3-genus field k∗f :

Definition 6. A quartet (kµ)1≤µ≤4 with conductor c = pqr and its sub-doublet (kpq, k̃pq) of cyclic
cubic fields with common partial conductor f = pq is called

(8.2)


regular if v∗ ∈ {0, 1, 2},
singular if v∗ = 3,

super-singular if v∗ ∈ {4, 5, 6, . . .}.

Let (k1, . . . , k4) be the quartet of cyclic cubic number fields sharing the common discriminant
d = c2 with conductor c = pqr, divisible by exactly three primes ≡ 1 (mod 3) (one among them
may be the prime power 32), and belonging to one of the Graphs 5–9 of Category III. According
to Theorem 2, Cl3(kµ) ' (3, 3) and thus h3(kµ) = 9, for 1 ≤ µ ≤ 4.

Due to these facts, the class number relation 243 ·h3(Bj) = (Uj : Vj) ·9 ·9 ·1 ·3 for j ∈ {5, 6, 8, 9}
implies that there are precisely four tame bicyclic bicubic fields, B5 = k1k3kpk̃qr, B6 = k1k4kqk̃pr,
B8 = k2k4kpkqr, B9 = k2k3kqkpr, satisfying 9 | h3(Bj) = (Uj : Vj), for each j ∈ {5, 6, 8, 9}, and so
we must have the matrix ranks r5 = r6 = r8 = r9 = 2 with indices (Uj : Vj) ∈ {9, 27}.

In contrast, each of the six wild bicyclic bicubic fields, B1 = k1kpqkprkqr, B2 = k2kpqk̃prk̃qr,

B10 = k3k4krkpq, B3 = k3k̃pqk̃prkqr, B4 = k4k̃pqkprk̃qr, B7 = k1k2krk̃pq, with h3(Bj) > (Uj : Vj),
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either contains kpq or k̃pq. The class number relation (4.2) implies

243 · h3(Bj) = (Uj : Vj) ·


9 · h3(kpq) · 3 · 3 for j = 1, 2,

9 · 9 · 1 · h3(kpq) for j = 10,

9 · h3(k̃pq) · 3 · 3 for j = 3, 4,

9 · 9 · 1 · h3(k̃pq) for j = 7.

Summarized, in dependence on the index Ij := (Uj : Vj) of subfield units and the rank rj ,

(8.3) h3(Bj) =



h3(kpq) for j = 1, 2, 10, Ij = 3, rj = 3,

3 · h3(kpq) for j = 1, 2, 10, Ij = 9, rj = 2,

9 · h3(kpq) for j = 1, 2, 10, Ij = 27, rj = 2,

h3(k̃pq) for j = 3, 4, 7, Ij = 3, rj = 3,

3 · h3(k̃pq) for j = 3, 4, 7, Ij = 9, rj = 2,

9 · h3(k̃pq) for j = 3, 4, 7, Ij = 27, rj = 2,

with h3(kpq) = h3(k̃pq) = 9 in the regular situation, and h3(kpq), h3(k̃pq) ≥ 27 in the singular or
super-singular situation. Formula (8.3) supplements Corollary 1 in the case p↔ q.

Lemma 8. (3-class ranks of components.) All four components kµ, 1 ≤ µ ≤ 4, of the quartet
have elementary bicyclic 3-class group Cl3(kµ) ' (3, 3). The condition 9 | h3(Bj) = (Uj : Vj) ∈
{9, 27}, rj = 2, is satisfied for j ∈ {5, 6, 8, 9}, the so-called tame extensions.

Proof. This is a consequence of the definition of Graph 5–9 in Category III and the rank distri-
bution in Theorem 2. The fields Bj with j ∈ {5, 6, 8, 9} neither contain kpq nor k̃pq. �

All computations for examples in the following subsections were performed with Magma [6, 7, 12].

8.1. Category III, Graph 5. In this section, the combined cubic residue symbol of three
prime(power)s dividing the conductor c = pqr is assumed to be [p, q, r]3 = {p↔ q; r}.

Since there are no trivial cubic residue symbols among the three prime(power) divisors p, q, r
of the conductor c = pqr, except p↔ q with overall assumption (8.1), the principal factors of the

subfields k ∈ {kpr, k̃pr, kqr, k̃qr} with t = 2 of the absolute genus field k∗ must be divisible by both
relevant primes, and we can use the general approach

(8.4)
A(kpr) = p`r, A(k̃pr) = p−`r, and

A(kqr) = qsr, A(k̃qr) = q−sr,

with `, s ∈ {−1, 1}, identifying −1 ≡ 2 (mod 3), since it is easier to manage: `2 = s2 = 1.

Lemma 9. In dependence on the decisive principal factors in Equation (8.4), the principal
factors of the quartet (kµ)4µ=1 sharing common conductor c = pqr with Graph III.5 are given by
(8.5)

A(k1) = pqr2, A(k2) = pqr, A(k3) = pq2r, A(k4) = p2qr if (`, s) = (1, 1),

A(k1) = p2qr, A(k2) = pq2r, A(k3) = pqr, A(k4) = pqr2 if (`, s) = (1, 2),

A(k1) = pq2r, A(k2) = p2qr, A(k3) = pqr2, A(k4) = pqr if (`, s) = (2, 1),

A(k1) = pqr, A(k2) = pqr2, A(k3) = p2qr, A(k4) = pq2r if (`, s) = (2, 2),

A(k1) = p`qsr−1, A(k2) = p`qsr, A(k3) = p`q−sr, A(k4) = p−`qsr generally.

Proof. We implement the general approach (8.4). From the ranks rj = 2 for j = 5, 6, 8, 9, there
arise constraints for the exponents in the proposal A(kµ) = pxµqyµrzµ , 1 ≤ µ ≤ 4, with the aid of
principal factor matrices. For these tame bicyclic bicubic fields Bj , j ∈ {5, 6, 8, 9}, the rank rj is
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calculated with row operations on the associated matrix Mj :

M5 =


x1 y1 z1
x3 y3 z3
1 0 0

0 −s 1

, M6 =


x1 y1 z1
x4 y4 z4
0 1 0

−` 0 1

, M8 =


x2 y2 z2
x4 y4 z4
1 0 0

0 s 1

, M9 =


x2 y2 z2
x3 y3 z3
0 1 0

` 0 1

.

For B5 = k1k3kpk̃qr, M5 leads to the decisive pivot elements z1 + sy1 and z3 + sy3 in the

last column, similarly, for B6 = k1k4kqk̃pr, M6 leads to z1 + `x1 and z4 + `x4, similarly, for
B8 = k2k4kpkqr, M8 leads to z2 − sy2 and z4 − sy4, and similarly, for B9 = k2k3kqkpr, M9 leads
to z2 − `x2 and z3 − `x3. So, r5 = r6 = r8 = r9 = 2 implies `x1 ≡ sy1 ≡ −z1, `x2 ≡ sy2 ≡ z2,
`x3 ≡ −sy3 ≡ z3, −`x4 ≡ sy4 ≡ z4, and consequently (8.5). �

Proposition 9. (Quartet with 3-rank two for III.5.) Let (kµ)4µ=1 be a quartet with common
conductor c = pqr, whose combined cubic residue symbol belongs to Graph 5 of Category III. Then
the ranks of principal factor matrices of tame bicyclic bicubic fields are rj = 2 for j = 5, 6, 8, 9. In

terms of exponents of primes in four variable principal factors, A(kpq) = pmqn, A(k̃pq) = pm̃qñ,
from (8.1), and A(kpr) = p`r, A(kqr) = qsr, from (8.4), the ranks of principal factor matrices of
wild bicyclic bicubic fields are given by

(8.6) r1 = r2 = r10 = 3 iff `m 6≡ −sn (mod 3) and r3 = r4 = r7 = 3 iff `m̃ 6≡ sñ (mod 3).

Proof. Up to this point, the parameters m,n, m̃, ñ did not come into the play yet. They decide
about the rank rj of the associated principal factor matrices Mj of the wild bicyclic bicubic fields
Bj , j ∈ {1, 2, 3, 4, 7, 10}. Hence, we perform row operations on these matrices:

M1 =


` s −1

m n 0

` 0 1

0 s 1

, M2 =


` s 1

m n 0

−` 0 1

0 −s 1

, M10 =


` −s 1

−` s 1

0 0 1

m n 0

.

For B1 = k1kpqkprkqr, M1 leads to the decisive pivot element −`m − sn in the last column,

similarly, for B2 = k2kpqk̃prk̃qr, M2 leads to `m + sn, and similarly, for B10 = k3k4krkpq, M10

leads to n+ `sm in the middle column. So, r1 = r2 = r10 = 3 iff `m 6≡ −sn, by viewing the pivot
elements modulo 3. Next we consider:

M3 =


` −s 1

m̃ ñ 0

−` 0 1

0 s 2

, M4 =


−` s 1

m̃ ñ 0

` 0 1

0 −s 1

, M7 =


` s −1

` s 1

0 0 1

m̃ ñ 0

.

For B3 = k3k̃pqk̃prkqr, M3 leads to `m̃ − sñ, similarly, for B4 = k4k̃pqkprk̃qr, M4 leads to

−`m̃ + sñ, and similarly, for B7 = k1k2krk̃pq, M7 leads to ñ − `sm̃ in the middle column. So,
r3 = r4 = r7 = 3 iff `m̃ 6≡ sñ. �

In Ayadi’s Thesis [2, p. 80], only the special case ` = s = −1 is elaborated. As mentioned above
already, the condition (m,n) = (m̃, ñ) is warranted in the regular situation 9‖h(kpq). In any
situation, at least one of the following two rank equations, which imply a total transfer kernel, is
satisfied — in many cases even both simultaneously:

(8.7)
r1 = r2 = r10 = 3 for (m,n) ∈ {(0, 1), (1, 0)},
r3 = r4 = r7 = 3 for (m̃, ñ) ∈ {(0, 1), (1, 0)}.

Theorem 15. (Second 3-class groups for III.5) There are several minimal transfer kernel
types (mTKT) κ0 of kµ, 1 ≤ µ ≤ 4, and other possible capitulation types in ascending order
κ0 < κ < κ′ < κ′′ < κ′′′, either κ0 = (2134), type G.16, κ = (2130), type d.23, or κ0 = (2143),
type G.19, κ = (2140), type d.25, ending in κ′ = (2100), type b.10, κ′′ = (2000), type a.3∗ or a.3,
or κ′′ = (0004), type a.2, and the maximal κ′′′ = (0000), type a.1.

In terms of the counter N ∗ := #{1 ≤ j ≤ 10 | (Uj : Vj) = 27}, of maximal indices of
subfield units Ij = (Uj : Vj) for all ten bicyclic bicubic fields Bj < k∗ with conductor c = pqr,
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the second 3-class groups M = Gal(F2
3(kµ)/kµ) are given in the following way as uniform or

non-uniform quartets, with abbreviation P7 := 〈2187, 64〉:

(8.8) M =



〈243, 28..30〉4, α = [21, 11, 11, 11], κ = (0000) if N ∗ = 0,

〈243, 27〉, α = [11, 11, 11, 22], κ = (0004) once if N ∗ = 1,

〈243, 28..30〉3, α = [21, 11, 11, 11], κ = (0000) thrice if N ∗ = 1,

〈81, 7〉4, α = [111, 11, 11, 11], κ = (2000) if N ∗ = 2,

〈243, 27〉2, α = [11, 11, 11, 22], κ = (0004) twice if N ∗ = 3,

〈243, 25〉2, α = [22, 11, 11, 11], κ = (2000) twice if N ∗ = 3,

〈729, 34..39〉4, α = [111, 111, 21, 21], κ = (2100) if N ∗ = 4,

〈2187, 250〉2, α = [111, 111, 32, 21], κ = (2130) twice if N ∗ = 7,

〈2187, 251|252〉2, α = [111, 111, 32, 21], κ = (2140) twice if N ∗ = 7,

(P7 −#2; 40|48)2, α = [111, 111, 32, 32], κ = (2134) twice if N ∗ = 10,

(P7 −#2; 42|45|49)2, α = [111, 111, 32, 32], κ = (2143) twice if N ∗ = 10.

The leading six rows concern the regular situation Cl3(kpq) ' (3, 3). In particular, the condition
(m,n) ∈ {(0, 1), (1, 0)} for 〈81, 7〉4 is equivalent to the extra special group Gal(F2

3(kpq)/kpq) '
〈27, 4〉, whereas Gal(F2

3(kpq)/kpq) ' 〈9, 2〉 is abelian for all other pairs (m,n). The trailing rows

concern the (super-)singular situation with h3(kpq) = h3(k̃pq) = 27. With exception of the
trailing rows, the 3-class field tower has length `3(Kµ) = 2 and group G = Gal(F∞3 (kµ)/kµ) 'M.

Proof. Let p, q, r be the prime ideals of kµ over p, q, r.

Since p splits in kq, it also splits in B6 = k1k4kqk̃pr and B9 = k2k3kqkpr.

Since q splits in kp, it also splits in B5 = k1k3kpk̃qr and B8 = k2k4kpkqr. By Corollary 3,

since q is principal ideal in kq, the class [q] capitulates in B6 = k1k4kqk̃pr and B9 = k2k3kqkpr;

since r is principal ideal in kr, the class [r] capitulates in B7 = k1k2krk̃pq and B10 = k3k4krkpq.

Since qr is principal ideal in k̃qr, the class [qr] capitulates inB2 = k2kpqk̃prk̃qr, B4 = k4k̃pqkprk̃qr,

and B5 = k1k3kpk̃qr, by Proposition 2. Since A(k1) = pqr and A(k3) = p2qr, [qr] generates the
same subgroup as [p] in ker(TB5/kµ), µ = 1, 3.

Since qr2 is principal ideal in kqr, the class [qr2] capitulates in B1 = k1kpqkprkqr, B3 =

k3k̃pqk̃prkqr, and B8 = k2k4kpkqr, by Proposition 2. Since A(k2) = pqr2 and A(k4) = pq2r,
[qr2] generates the same subgroup as [p] in ker(TB8/kµ), µ = 2, 4.

The 3-class group of kµ is always Cl3 = 〈[q], [r]〉. It contains the norm class groups of Bj > kµ
as subgroups of index 3: NBj/kµCl3(Bj) is always generated by [q] for j = 5, 8, due to the above
mentioned splitting of q. See also Table 12.

We recall that equality (m,n) = (m̃, ñ) is warranted for the regular situation Cl3(kpq) ' (3, 3),
and there is an equivalence involving the counter P in Theorem 4: Gal(F2

3(kpq)/kpq) ' 〈27, 4〉 iff
P = 1 iff (either m = 0 or n = 0) iff (m,n) ∈ {(0, 1), (1, 0)}. Let Ij := (Uj : Vj).
N ∗ = 0 implies wild ranks rj = 2 and Ij = 9, h3(Bj) = 3 ·h3(kpq) = 3 ·9 = 27 for j ∈ {1, 2, 10},

but rj = 3, Ij = 3, h3(Bj) = h3(k̃pq) = 9 for j ∈ {3, 4, 7}, according to Equation (8.3), and tame
indices Ij = 9 for all j ∈ {5, 6, 8, 9}. The uniform minimal indices Ij of subgroup units correspond
to maximal norm unit indices (U(kµ) : NBj/kµU(Bj)) = 3 and thus to total capitulations whenever
kµ < Bj is a subfield for 1 ≤ j ≤ 10, 1 ≤ µ ≤ 4. According to Theorem 9 and Corollary 4, the
resulting abelian type invariants α = [21, 11, 11, 11] and transfer kernel type κ = (0000), that is
the Artin pattern (α,κ), identify three possible groups M ' 〈243, 28..30〉, since 〈81, 9〉 must be
cancelled, due to wrong second layer α2.

An exception arises for N ∗ = 1, which causes non-uniformity with I1 = 27, h3(B1) = 9 ·
h3(kpq) = 9 · 9 = 81, as opposed to the remaining I2 = I10 = 9. (Everything else is like N ∗ = 0.)
Thus (U(k1) : NB1/k1U(B1)) = 1, and here we have a fixed point capitulation, ker(TB1/k1) =

〈[qr2]〉. The corresponding abelian type invariants α = [11, 11, 11, 22] and transfer kernel type
κ = (0004) uniquely identify the group 〈243, 27〉 for µ = 1. The remaining three groups are
〈243, 28..30〉3.
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For N ∗ = 2 and (m,n) ∈ {(0, 1), (1, 0)}, the relations m 6≡ −n and m 6≡ n imply rj = 3, Ij = 3,

h3(Bj) = h3(k̃pq) = 9 for all wild bicyclic cicubic fields Bj , j ∈ {1, 2, 3, 4, 7, 10}. For j ∈ {5, 8}, we
have Ij = 9, but for j ∈ {6, 9}, the maximal index Ij = 27 is attained and enables an elementary
tricyclic 3-class group Cl3(Bj) = 〈P1,P2,P3〉 ' (3, 3, 3) generated by the prime ideals lying over
pOBj = P1 · P2 · P3. Here, we have a non-fixed point capitulation ker(TBj/kµ) = 〈[q]〉. The
transposition is hidden by total capitulation in B5 and B8 with norm class group generated by
[q]. The abelian type invariants α = [111, 11, 11, 11] and transfer kernel type κ = (2000) uniquely
identify the group 〈81, 7〉 ' Syl3(A9) for µ = 1.

N ∗ = 3 implies rj = 3 and thus wild indices Ij = 3, h3(Bj) = h3(k̃pq) = 9 for j ∈ {1, 2, 10}.
We also have tame indices Ij = 9 for j ∈ {5, 6, 8, 9}. However, we have rj = 2 and remaining
wild indices Ij = 27, h3(Bj) = 9 · h3(kpq) = 9 · 9 = 81 for j ∈ {3, 4, 7}, according to Equation
(8.3). There arises a fixed point capitulation, ker(TB7/kµ) = 〈[r]〉 and, non-uniformly, a non-fixed
point capitulation, ker(TBj/kµ) = 〈[p]〉 for j = 3, 4 with norm class groups also generated by [r].
The corresponding abelian type invariants α = [11, 11, 11, 22] and transfer kernel type κ = (0004),
respectively κ = (0003), uniquely identify the two groups 〈243, 27〉2, respectively the remaining
two groups 〈243, 25〉2.

For N ∗ = 4 and the simplest singular or super-singular situation with h3(kpq) = h3(k̃pq) = 27,
P = 1 implies rj = 3, Ij = 3, h3(Bj) = 27 for all wild j ∈ {1, 2, 3, 4, 7, 10}, and uniformly h3(Bj) =
Ij = 27 for all tame j ∈ {5, 6, 8, 9}. The latter correspond to elementary tricyclic 3-class groups
Cl3(Bj) = 〈Q1,Q2,Q3〉 ' (3, 3, 3) generated by the prime ideals lying over qOBj = Q1 ·Q2 ·Q3

for j = 5, 8, and Cl3(Bj) = 〈P1,P2,P3〉 ' (3, 3, 3) generated by the prime ideals lying over
pOBj = P1 ·P2 ·P3 for j = 6, 9. Here, we have a non-fixed point capitulation ker(TBj/kµ) = 〈[p]〉
for j = 5, 8, and ker(TBj/kµ) = 〈[q]〉 for j = 6, 9. The transposition is not hidden by total
capitulation and characteristic for uniform transfer kernel type b.10. According to Theorem 9
and Corollary 4, the abelian type invariants α = [111, 111, 21, 21] and the transfer kernel type
κ = (2100), identify six possible groups M ' 〈729, 34..39〉.

For N ∗ = 7, only three wild indices rj = 3, Ij = 3, h3(Bj) = 27 for j = 3, 4, 7 are not maximal.
The TKTs are not uniform, κ = (2130), type d.23, twice and κ = (2140), type d.25, twice.

For N ∗ = 10, all tame and wild indices are maximal Ij = 27 for 1 ≤ j ≤ 10, which implies
non-uniform minimal TKTs κ0 = (2134), type G.16, twice and κ0 = (2143), type G.19, twice. �

Corollary 9. (Non-uniformity of the quartet for III.5.) For N ∗ = 1, only a sub-triplet of the
quartet shares a common capitulation type κ(kµ), abelian type invariants α(kµ), and second 3-class
group M = Gal(F2

3(kµ)/kµ). The invariants of the fourth component differ. For N ∗ ∈ {3, 7, 10},
only two pairs of components of the quartet share a common capitulation type κ(kµ), and second 3-
class group M = Gal(F2

3(kµ)/kµ), whereas the abelian type invariants α(kµ) are uniform. However,
the four components agree in all situations with even N ∗ ∈ {0, 2, 4}.

Proof. This is an immediate consequence of Theorem 15 and Table 12. �

In terms of capitulation targets in Corollary 2, Theorem 15 and parts of its proof are now sum-
marized in Table 12 with transpositions in bold font.

Table 12. Norm class groups and minimal transfer kernels for Graph III.5

Base k1 k2 k3 k4
Ext B1 B5 B6 B7 B2 B7 B8 B9 B3 B5 B9 B10 B4 B6 B8 B10

NCG qr2 q qr r qr r q qr2 r q qr qr2 r qr2 q qr

TK qr2 qr q r qr r qr2 q qr2 qr q r qr q qr2 r

κ 1 3 2 4 1 2 4 3 4 3 2 1 4 3 2 1

Example 5. The prototypes for Graph III.5, i.e., the cases in Theorem are four regular situations,
c = 14 049 with {7 ↔ 223; 9} and N ∗ = 0; c = 17 073 with {9 ↔ 271; 7} and N ∗ = 2; c = 20 367
with {9 ↔ 73; 31} and N ∗ = 1; c = 21 231 with {7 ↔ 337; 9} and N ∗ = 3; and the singular
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situation c = 42 399 with {7 ↔ 673; 9} and N ∗ = 4. Here, we have distinct (m,n) = (0, 1),
but (m̃, ñ) = (1, 0). There is also a super-singular prototype c = 48 447 with {7 ↔ 769; 9}
and N ∗ = 4, phenomenologically completely identical with the singular prototype, except that
(m,n) = (m̃, ñ) = (0, 1). With considerable statistic delay, there appeared N ∗ ∈ {7, 10}.

In Table 13, we summarize the prototypes of graph III.5. Data comprises ordinal number No.,
conductor c of k, combined cubic residue symbol [p, q, r]3, regularity, resp. (super-)singularity,
expressed by 3-valuation v∗ = v3(#Cl(k∗)) of class number of absolute 3-genus field k∗, 3-valuation

v = v3(#Cl(kpq)), respectively ṽ = v3(#Cl(k̃pq)), of class number of critical field kpq, respectively

k̃pq, critical exponents m,n in principal factor A(kpq) = pmqn, resp. m̃, ñ in A(k̃pq) = pm̃qñ,
resp. ` in A(kpr) = p`r, resp. s in A(kqr) = qsr, capitulation type of k, second 3-class group
M = Gal(F2

3(k)/k) of k, and length `3(k) of 3-class field tower of k. For abbreviation we put
P7 := 〈2187, 64〉, R4

4 := P7 −#2; 54, R4
5 := P7 −#2; 57, R4

6 := P7 −#2; 59,
S4
4 := R4

4 −#1; 8−#1; 3|7, U4
5 := R4

5 −#1; 1−#1; 3|6, V 4
6 := R4

6 −#1; 6−#1; 2|6.
See the tables and tree diagrams in [18, §§ 11.3–11.4, pp. 108–116, Tbl. 4–5, Fig. 9–11].

Table 13. Prototypes for Graph III.5

No. c p↔ q, r v∗ v ṽ m, n m̃, ñ ` s capitulation type M `3(k)

1 14 049 7↔ 223, 9 1 2 2 2, 1 2, 1 1 1 a.1 〈243, 28..30〉4 = 2

2 17 073 9↔ 271, 7 2 2 2 0, 1 0, 1 1 1 a.3∗ 〈81, 7〉4 = 2

3 20 367 9↔ 73, 31 1 2 2 2, 1 2, 1 2 2 a.2, a.1 〈243, 27〉, 〈243, 28..30〉3 = 2

4 21 231 7↔ 337, 9 1 2 2 1, 1 1, 1 1 1 a.2, a.3 〈243, 27〉2, 〈243, 25〉2 = 2

13 42 399 7↔ 673, 9 3 3 3 0, 1 1, 0 1 2 b.10 〈729, 37..39〉4 ≥ 2

16 48 447 7↔ 769, 9 4 3 3 0, 1 0, 1 1 1 b.10 〈729, 37..39〉4 ≥ 2

39 100 503 13↔ 859, 9 3 3 3 1, 0 1, 1 2 1 b.10 〈729, 34..36〉4 ≥ 2

67 145 593 7↔ 2311, 9 4 3 3 2, 1 2, 1 1 1 d.23, d.25 〈2187, 250〉2, 〈2187, 251|252〉2 ≥ 2

128 256 669 37↔ 991, 7 6 5 3 1, 1 2, 1 2 1 G.16,G.19 (S4
4)

2, (U4
5 |V

4
6 )2 ≥ 3

8.2. Category III, Graph 6. Let the combined cubic residue symbol of three primes dividing
the conductor c = pqr be [p, q, r]3 = {r ← p↔ q}.

Proposition 10. (Quartet with 3-rank two for III.6.) For fixed µ ∈ {1, 2, 3, 4}, let p, q, r be
the prime ideals of kµ over p, q, r, that is pOkµ = p3, qOkµ = q3, rOkµ = r3, then the principal
factor of kµ is A(kµ) = p, and the 3-class group of kµ is,

(8.9) Cl3(kµ) = 〈[q], [r]〉 ' (3, 3).

The unramified cyclic cubic relative extensions of kµ are among the absolutely bicyclic bicubic
fields Bi, 1 ≤ i ≤ 10. The tame extensions with 9 | h3(Bi) = (Ui : Vi) ∈ {9, 27} are Bi with

i = 5, 6, 8, 9, since they neither contain kpq nor k̃pq. For each µ, there are two tame extensions
Bj/kµ, B`/kµ with the following properties. The first, Bj with j ∈ {6, 9}, has norm class group
NBj/kµ(Cl3(Bj)) = 〈[qrs]〉 with s ∈ {1, 2}, cyclic transfer kernel

(8.10) ker(TBj/kµ) = 〈[q]〉

of order 3, and elementary tricyclic 3-class group Cl3(Bj) = 〈[QRsP1], [QRsP2], [QRsP3]〉 '
(3, 3, 3), generated by the classes of the prime ideals of Bj over pOBj = P1P2P3, qOBj = Q,
rOBj = R. The second, B` with ` ∈ {5, 8}, has norm class group NB`/kµ(Cl3(B`)) = 〈[q]〉,
transfer kernel

(8.11) ker(TB`/kµ) ≥ 〈[qrs]〉,

and 3-class group Cl3(B`) = 〈[Q1], [Q2], [Q3]〉 ≥ (3, 3), generated by the classes of the prime ideals
of B` over qOB` = Q1Q2Q3. The pair (j, `) forms a hidden or actual transposition of the
transfer kernel type κ(kµ). The remaining two Bi > kµ, i 6= j, i 6= `, have norm class group 〈[r]〉,
respectively 〈[q2rs]〉, and transfer kernel

ker(TBi/kµ) ≥ 〈[r]〉, or ≥ 〈[q2rs]〉,
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providing the option of either two possible fixed points or a further transposition in the transfer
kernel type κ(kµ). In terms of n and ñ in A(kpq) = pmqn and A(k̃pq) = pm̃qñ, the ranks of the
wild extensions are

(8.12) r1 = r2 = r10 = 3 iff n 6= 0 iff q | A(kpq) and r3 = r4 = r7 = 3 iff ñ 6= 0 iff q | A(k̃pq).

Proof. By Proposition 3, principal factors are A(kpr) = A(k̃pr) = p, since r ← p. Further, by
Proposition 4, A(kµ) = p, for all 1 ≤ µ ≤ 4, since p is universally repelling r ← p → q. Since
p = αOkµ is a principal ideal, its class [p] = 1 is trivial, whereas the classes [q], [r] are non-trivial.

Assume the principal factors A(kqr) = qr2 and A(k̃qr) = qr. The parameters m,n, m̃, ñ,
proposed for all Graphs 5–9 of Category III, decide about the rank rj of the associated principal
factor matrices Mj of the wild bicyclic bicubic fields Bj , j ∈ {1, 2, 3, 4, 7, 10}. As usual, we perform
row operations on these matrices:

M1 =


1 0 0

m n 0

1 0 0

0 1 2

, M2 =


1 0 0

m n 0

1 0 0

0 1 1

, M10 =


1 0 0

1 0 0

0 0 1

m n 0

.

For B1 = k1kpqkprkqr, M1 leads to the decisive pivot element −2n in the last column, similarly

for B2 = k2kpqk̃prk̃qr, M2 leads to −n, and similarly for B10 = k3k4krkpq, M10 leads to n in the
middle column. So, r1 = r2 = r10 = 3 iff n 6= 0, by viewing the pivot elements modulo 3. Next:

M3 =


1 0 0

m̃ ñ 0

1 0 0

0 1 2

, M4 =


1 0 0

m̃ ñ 0

1 0 0

0 1 1

, M7 =


1 0 0

1 0 0

0 0 1

m̃ ñ 0

.

For B3 = k3k̃pqk̃prkqr, M3 leads to −2ñ, similarly for B4 = k4k̃pqkprk̃qr, M4 leads to −ñ, and

similarly for B7 = k1k2krk̃pq, M7 leads to ñ in the middle column. So, r3 = r4 = r7 = 3 iff ñ 6= 0.

In the regular case h3(kpq) = h3(k̃pq) = 9, where (m,n) = (m̃, ñ), the condition n 6= 0, that is
q | A(kpq), is certainly satisfied when P = 2 or equivalently Gal(F2

3(kpq)/kpq) ' 〈9, 2〉, according
to Theorem 4. However, when P = 1 or equivalently Gal(F2

3(kpq)/kpq) ' 〈27, 4〉, then we may
either have q | A(kpq) and still n 6= 0, or p | A(kpq), n = 0, with completely different consequence
r1 = r2 = r10 = r3 = r4 = r7 = 2. In the singular and super-singular cases, both pairs of
parameters, (m,n) and (m̃, ñ), more precisely only n and ñ, must be taken into consideration,
separately. See also the proof of Theorem 16. �

In terms of capitulation targets in Corollary 2, Theorem 16 and parts of its proof are now sum-
marized in Table 14 with transpositions in bold font.

Table 14. Norm class groups and minimal transfer kernels for Graph III.6

Base k1 k2 k3 k4
Ext B1 B5 B6 B7 B2 B7 B8 B9 B3 B5 B9 B10 B4 B6 B8 B10

NCG r q qr qr2 r qr q qr2 qr2 q qr r qr qr2 q r

TK qr2 qr q r qr r qr2 q qr2 qr q r qr q qr2 r

κ 4 3 2 1 2 1 4 3 1 3 2 4 1 3 2 4

Theorem 16. (Second 3-class group for III.6.) To identify the second 3-class group M =

Gal(F2
3(kµ)/kµ), 1 ≤ µ ≤ 4, let the principal factor of kpq, respectively k̃pq, be A(kpq) = pmqn,

respectively A(k̃pq) = pm̃qñ, and additionally assume the regular situation where both Cl3(kpq) '
Cl3(k̃pq) ' (3, 3) are elementary bicyclic, whence (m,n) = (m̃, ñ).

Then there are several minimal transfer kernel types (mTKT) κ0 of kµ, 1 ≤ µ ≤ 4, and
other possible capitulation types in ascending order κ0 < κ < κ′ < κ′′, ending in the mandatory
κ′′ = (2000), type a.3∗, either κ0 = (2134), type G.16, κ = (2130), type d.23, κ′ = (2100), type
b.10, or κ0 = (2143), type G.19, κ = (2140), type d.25, and again κ′ = (2100), type b.10.
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In the regular situation, the second 3-class group is M '
(8.13)

〈81, 7〉4, α = [111, 11, 11, 11]4, κ = (2000)4 if n 6= 0, N = 1,

〈729, 34..39〉4, α = [111, 111, 21, 21]4, κ = (2100)4 if n = 0, N = 2,

〈729, 43〉2, 〈729, 42〉2, α = [111, 111, 22, 21]4, κ = (2140)2, (2130)2 if n = 0, N = 3,

〈2187, 71〉2, 〈2187, 69〉2 α = [111, 111, 22, 22]4, κ = (2143)2, (2134)2 if n = 0, N = 4,

where N := #{1 ≤ w ≤ 10 | kµ < Bw, Iw = 27}. Only in the first case, the 3-class field tower
has certainly the group G = Gal(F∞3 (kµ)/kµ) ' M and length `3(kµ) = 2, otherwise `3(kµ) ≥ 3
cannot be excluded, even if d2(M) ≤ 4.

In the singular situation, the second 3-class group is M '
(8.14){
〈2187, 251|252〉2, 〈2187, 250〉2, α = [111, 111, 32, 21]4, κ = (2140)2, (2130)2 if n = ñ = 0, N = 3.

In the super-singular situation, no statement is possible, since the order of M may increase
unboundedly.

Proof. In the regular situation Cl3(kpq) = Cl3(k̃pq) = (3, 3), exponents (m,n) and (m̃, ñ) of

principal factors A(kpq) = pmqn and A(k̃pq) = pm̃qñ are equal. Let P be the number of primes
dividing A(kpq). According to the proof of Proposition 10, ranks rw and indices Iw := (Uw : Vw)
of subfield units for wild extensions are given by rw = 3, Iw = 3 iff n 6= 0, for w ∈ {1, 2, 10}, and
rw = 3, Iw = 3 iff ñ 6= 0, for w ∈ {3, 4, 7}, in particular, certainly for P = 2.

This implies 3-class numbers h3(Bw) = h3(kpq) = h3(k̃pq) = 9 and 3-class groups Cl3(Bw) '
(3, 3), for w ∈ {1, 2, 3, 4, 7, 10}, whenever n 6= 0, i.e. q | A(kpq), a remarkable distinction of the
prime q against the primes p, r. We point out that this can occur not only for P = 2, but also for
P = 1, provided that A(kpq) = q, n = 1, and not A(kpq) = p, m = 1.

Indices of tame extensions with 9 | h3(Bw) = Iw ∈ {9, 27} and rw = 2 are non-uniform:
corresponding to a unique elementary tricyclic Cl3(Bw) ' (3, 3, 3), we must have Iw = 27 for
w ∈ {6, 9} with norm class group NBw/kµCl3(Bw) either 〈[qr]〉 or 〈[qr2]〉, but corresponding to
the remaining bicyclic Cl3(Bw) ' (3, 3), the index Iw = 9 takes the minimal value for w ∈ {5, 8}
with norm class group NBw/kµCl3(Bw) = 〈[q]〉. Thus N = 1 and the resulting Artin pattern
α = [111, 11, 11, 11] uniquely identifies the group G = M ' 〈81, 7〉 of maximal class.

Now we come to n = 0, whence necessarily P = 1. Then rw = 2 and Iw ∈ {9, 27} for the wild
extensions w ∈ {1, 2, 3, 4, 7, 10}. Indices of tame extensions now become uniform, corresponding to
a pair of elementary tricyclic Cl3(Bw) ' (3, 3, 3), which enforces Iw = 27 for w ∈ {5, 6, 8, 9}, i.e.,
N ≥ 2. The number N of maximal unit indices decides about the group M: If N = 2, then for all
w ∈ {1, 2, 3, 4, 7, 10}: Iw = 9, h3(Bw) = 3 · h3(kpq) = 27, and Cl3 ' (9, 3), according to the laws
for 3-groups of coclass ≥ 2 [16, pp. 289–292]. The Artin pattern α = [111, 111, 21, 21] identifies
the possible groups M ' 〈729, 34..39〉. If N = 3, then Iw = 27 for w ∈ {3, 4, 7}, but Iw = 9 for
w ∈ {1, 2, 10}. The Artin pattern α = [111, 111, 22, 21] together with κ = (2140)2, κ = (2130)2,
according to Table 14, identifies the possible groups M ' 〈2187, 251|252〉2, 〈2187, 250〉2 of coclass
2. If N = 4, then for all w ∈ {1, 2, 3, 4, 7, 10}: Iw = 27, h3(Bw) = 9·h3(kpq) = 81, and Cl3 ' (9, 9).
The Artin pattern α = [111, 111, 22, 22] together with κ = (2143)2, κ = (2134)2, according to
Table 14, identifies the possible groups M ' 〈2187, 71〉2, 〈2187, 69〉2 of coclass 3. �

Corollary 10. (Non-uniformity of the quartet for III.6.) Only for N ≤ 2, the components
of the quartet, all with 3-rank two, share a common capitulation type κ(kµ), common abelian type
invariants α(kµ), and a common second 3-class group Gal(F2

3(kµ)/kµ), for 1 ≤ µ ≤ 4. For N ≥ 3,
the quartet splits into two sub-doublets and thus becomes non-uniform.

Proof. This is an immediate consequence of Theorem 16 and Table 14. �

Example 6. Prototypes for Graph III.6, that is, minimal conductors for each scenario in Theorem
16 are the following.

There are the regular cases c = 8 541 with symbol {9 ↔ 73 → 13}, (m,n) = (1, 2); c = 9 373
with symbol {103 ↔ 13 → 7}, (m,n) = (1, 1); c = 56 329 with symbol {619 ↔ 13 → 7},
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(m,n) = (0, 1), all uniformly with G = M = 〈81, 7〉4, in contrast to c = 142 519 with symbol
{19 ↔ 577 → 13}, (m,n) = (1, 0), and uniform M = 〈729, 37..39〉4; c = 152 893 with symbol
{13 ↔ 619 → 19}, (m,n) = (1, 0), and uniform M = 〈729, 34..36〉4; c = 163 681 with symbol
{67 ↔ 349 → 7}, (m,n) = (1, 0), and non-uniform M = 〈729, 42〉2, 〈729, 43〉2; c = 193 059 with
symbol {1129↔ 19→ 9}, (m,n) = (1, 0), and non-uniform M = 〈2187, 69〉2, 〈2187, 71〉2 with two
distinct minimal transfer kernel types.

Further, the singular cases c = 78 169 with symbol {859↔ 13→ 7}, (m,n) = (1, 0), (m̃, ñ) =
(1, 1), and non-uniform M = 〈2187, 250〉2, 〈2187, 251|252〉2; c = 142 947 with symbol {9↔ 2269→
7}, (m,n) = (1, 0), (m̃, ñ) = (0, 1), and uniform M = 〈2187, 253〉4.

Finally, the super-singular cases c = 102 277 with symbol {769↔ 7→ 19}, (m,n) = (m̃, ñ) =
(0, 1), and uniform M = 〈729, 37..39〉4; c = 199 171 with symbol {7 ↔ 769 → 37}, (m,n) =
(m̃, ñ) = (1, 0), and uniform M = 〈6561, 693..698〉4.

In Table 15, we summarize the prototypes of Graph III.6 in the same way as in Table 13.

Table 15. Prototypes for Graph III.6

No. c r ← p↔ q v∗ v m, n ṽ m̃, ñ capitulation type M `3(k)

1 8 541 13← 73↔ 9 1 2 1, 2 2 1, 2 a.3∗ 〈81, 7〉4 = 2

2 9 373 7← 13↔ 103 1 2 1, 1 2 1, 1 a.3∗ 〈81, 7〉4 = 2

20 56 329 7← 13↔ 619 2 2 0, 1 2 0, 1 a.3∗ 〈81, 7〉4 = 2

29 78 169 7← 13↔ 859 3 3 1, 0 3 1, 1 d.23 〈2187, 250〉2 ≥ 2

d.25 〈2187, 251|252〉2 ≥ 2

34 102 277 19← 7↔ 769 4 3 0, 1 3 0, 1 b.10 〈729, 37..39〉4 ≥ 2

52 142 519 13← 577↔ 19 2 2 1, 0 2 1, 0 b.10 〈729, 37..39〉4 ≥ 2

54 142 947 7← 2269↔ 9 3 3 1, 0 3 0, 1 b.10 〈2187, 253〉4 ≥ 2

56 152 893 19← 619↔ 13 2 2 1, 0 2 1, 0 b.10 〈729, 34..36〉4 ≥ 2

58 163 681 7← 349↔ 67 2 2 1, 0 2 1, 0 d.23 〈729, 42〉2 ≥ 2

d.25 〈729, 43〉2 ≥ 2

71 193 059 9← 19↔ 1129 2 2 1, 0 2 1, 0 G.16 〈2187, 69〉2 ≥ 2

G.19 〈2187, 71〉2 ≥ 2

75 199 171 37← 769↔ 7 4 3 1, 0 3 1, 0 b.10 〈6561, 693..698〉4 ≥ 3

8.3. Category III, Graph 7. Let (k1, . . . , k4) be a quartet of cyclic cubic number fields sharing
the common conductor c = pqr, belonging to Graph 7 of Category III with combined cubic residue
symbol [p, q, r]3 = {r → p↔ q}.

Proposition 11. (Quartet with 3-rank two for III.7.) For fixed µ ∈ {1, 2, 3, 4}, let p, q, r
be the prime ideals of kµ over p, q, r, that is, pOkµ = p3, qOkµ = q3, rOkµ = r3. Under the

normalizing assumption A(kqr) = qr2, A(k̃qr) = qr, the principal factors of kµ are

(8.15) A(k1) = A(k3) = qr and A(k2) = A(k4) = qr2,

and the 3-class group of kµ is

(8.16) Cl3(kµ) = 〈[p], [q]〉 = 〈[p], [r]〉 ' (3, 3).

The unramified cyclic cubic relative extensions of kµ are among the absolutely bicyclic bicubic
fields Bi, 1 ≤ i ≤ 10. The tame extensions with 9 | h3(Bi) = (Ui : Vi) ∈ {9, 27} are Bi with

i = 5, 6, 8, 9, since they neither contain kpq nor k̃pq. For each µ, there are two tame extensions
Bj/kµ, B`/kµ with the following properties. The first, Bj with j ∈ {6, 9}, has norm class group
NBj/kµ(Cl3(Bj)) = 〈[p]〉, transfer kernel

(8.17) ker(TBj/kµ) ≥ 〈[q]〉,

and 3-class group Cl3(Bj) = 〈[P1], [P2], [P3]〉 ≥ (3, 3), generated by the classes of the prime
ideals of Bj over pOBj = P1P2P3. The second, B` with ` ∈ {5, 8}, has norm class group
NB`/kµ(Cl3(B`)) = 〈[q]〉, cyclic transfer kernel

(8.18) ker(TB`/kµ) = 〈[p]〉

of order 3, and elementary tricyclic 3-class group Cl3(B`) = 〈[Q1], [Q2], [Q3]〉 ' (3, 3, 3), gen-
erated by the classes of the prime ideals of B` over qOB` = Q1Q2Q3. The pair (j, `) forms a
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hidden or actual transposition of the transfer kernel type κ(kµ). The remaining two Bi > kµ,
i 6= j, i 6= `, have norm class group 〈[pq]〉, respectively 〈[pq2]〉, and transfer kernel

ker(TBi/kµ) ≥ 〈[q]〉,

providing the option of two possible repetitions in the transfer kernel type κ(kµ).

In terms of n and ñ in A(kpq) = pmqn and A(k̃pq) = pm̃qñ, the ranks of the wild extensions are

(8.19) r1 = r2 = r10 = 3 iff m 6= 0 iff p | A(kpq) and r3 = r4 = r7 = 3 iff m̃ 6= 0 iff p | A(k̃pq).

Proof. By Proposition 3, the symbol r → p implies principal factors A(kpr) = A(k̃pr) = r.

We assume principal factors A(kµ) = pxµqyµrzµ , for 1 ≤ µ ≤ 4, and A(kqr) = qr2, A(k̃qr) = qr.
We generally have the tame matrix ranks r5 = r6 = r8 = r9 = 2 and draw conclusions by

explicit calculations. For these bicyclic bicubic fields Bj , j ∈ {5, 6, 8, 9}, the rank rj is calculated
with row operations on the associated principal factor matrices Mj :

M5 =


x1 y1 z1
x3 y3 z3
1 0 0

0 1 1

, M6 =


x1 y1 z1
x4 y4 z4
0 1 0

0 0 1

, M8 =


x2 y2 z2
x4 y4 z4
1 0 0

0 1 2

, M9 =


x2 y2 z2
x3 y3 z3
0 1 0

0 0 1

.

For B5 = k1k3kpk̃qr, M5 leads to the decisive pivot elements z1 − y1 and z3 − y3, similarly,

for B6 = k1k4kqk̃pr, M6 leads to x1 and x4, similarly, for B8 = k2k4kpkqr, M8 leads to z2 − 2y2
and z4 − 2y4, and similarly, for B9 = k2k3kqkpr, M9 leads to x2 and x3. So, r5 = r6 = 2 implies
z1 = y1, z3 = y3, x1 = x4 = 0, and r8 = r9 = 2 implies z2 = 2y2, z4 = 2y4, x2 = x3 = 0, i.e.
A(k1) = A(k3) = qr and A(k2) = A(k4) = qr2.

A consequence of these principal factors is the coincidence of the subgroups of Cl3(kµ) generated
by the classes [q] and [r] in kµ, µ = 1, . . . , 4. By Corollary 3,

since p is principal ideal in kp, the class [p] capitulates in B5 = k1k3kpk̃qr and B8 = k2k4kpkqr;

since q is principal ideal in kq, the class [q] capitulates in B6 = k1k4kqk̃pr and B9 = k2k3kqkpr;

since r is principal ideal in kr, the class [r], and thus [q], capitulates in B7 = k1k2krk̃pq and
B10 = k3k4krkpq.

Moreover, since r is principal ideal in kpr and k̃pr, the class [r], and thus [q], also capitulates in

B1 = k1kpqkprkqr, B2 = k2kpqk̃prk̃qr, B3 = k3k̃pqk̃prkqr, B4 = k4k̃pqkprk̃qr,

B6 = k1k4kqk̃pr, and B9 = k2k3kqkpr, by Proposition 2.
The parameters m,n, m̃, ñ, proposed for all Graphs 5–9 of Category III, decide about the

rank rj of the associated principal factor matrices Mj of the wild bicyclic bicubic fields Bj ,
j ∈ {1, 2, 3, 4, 7, 10}. As usual, we perform row operations on these matrices:

M1 =


0 1 1

m n 0

0 0 1

0 1 2

, M2 =


0 1 2

m n 0

0 0 1

0 1 1

, M10 =


0 1 1

0 1 2

0 0 1

m n 0

.

For B1 = k1kpqkprkqr, M1 leads to the decisive pivot element m in the first column, similarly,

for B2 = k2kpqk̃prk̃qr, M2 leads to m, and similarly, for B10 = k3k4krkpq, M10 leads to m in the
first column. So, r1 = r2 = r10 = 3 iff m 6= 0. Next we consider:

M3 =


0 1 1

m̃ ñ 0

0 0 1

0 1 2

, M4 =


0 1 2

m̃ ñ 0

0 0 1

0 1 1

, M7 =


0 1 1

0 1 2

0 0 1

m̃ ñ 0

.

For B3 = k3k̃pqk̃prkqr, M3 leads to m̃, similarly, for B4 = k4k̃pqkprk̃qr, M4 leads to m̃, and

similarly, for B7 = k1k2krk̃pq, M7 leads to m̃ in the first column. So, r3 = r4 = r7 = 3 iff m̃ 6= 0.

Since r splits in kp, it also splits in B5 = k1k3kpk̃qr, B8 = k2k4kpkqr.

Since q splits in kp, it also splits in B5 = k1k3kpk̃qr, B8 = k2k4kpkqr.

Since p splits in kq, it also splits in B6 = k1k4kqk̃pr, B9 = k2k3kqkpr. �
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In terms of capitulation targets in Corollary 2, Theorem 17 and parts of its proof are now sum-
marized in Table 16 with transpositions in bold font.

Table 16. Norm class groups and minimal transfer kernels for Graph III.7

Base k1 k2 k3 k4
Ext B1 B5 B6 B7 B2 B7 B8 B9 B3 B5 B9 B10 B4 B6 B8 B10

NCG pq2 q p pq pq2 pq q p pq2 q p pq pq2 p q pq

TK q p q q q q p q q p q q q q p q

κ 2 3 2 2 3 3 4 3 2 3 2 2 3 3 2 3

Theorem 17. (Second 3-class group for III.7.) Let (k1, . . . , k4) be a quartet of cyclic cubic
number fields sharing the common conductor c = pqr, belonging to Graph 7 of Category III with
combined cubic residue symbol [p, q, r]3 = {q ↔ p→ r}.

Then the minimal transfer kernel type (mTKT) of kµ, 1 ≤ µ ≤ 4, is κ0 = (2111), type H.4,
and the other possible capitulation types in ascending order κ0 < κ′ < κ′′ < κ′′′ are κ′ = (2110),
type d.19, κ′′ = (2100), type b.10, and κ′′′ = (2000), type a.3∗.

To identify the second 3-class group M = Gal(F2
3(kµ)/kµ), 1 ≤ µ ≤ 4, let the decisive princi-

pal factors be A(kpq) = pmqn, A(k̃pq) = pm̃qñ, and additionally assume the regular situation

where both Cl3(kpq) ' Cl3(k̃pq) ' (3, 3) are elementary bicyclic, whence (m,n) = (m̃, ñ). Then

(8.20) M '


〈81, 7〉, α = [111, 11, 11, 11], κ = (2000) if m 6= 0, N = 1,

〈729, 34..39〉, α = [111, 111, 21, 21], κ = (2100) if m = 0, N = 2,

〈729, 41〉, α = [111, 111, 22, 21], κ = (2110) if m = 0, N = 3,

〈2187, 65|67〉, α = [111, 111, 22, 22], κ = (2111) if m = 0, N = 4,

where N := #{1 ≤ j ≤ 10 | kµ < Bj , Ij = 27}. Only in the leading row, the 3-class field tower
has warranted group G = Gal(F∞3 (kµ)/kµ) 'M, with length `3(kµ) = 2. Otherwise, tower length
`3(kµ) ≥ 3 cannot be excluded, even if d2(M) ≤ 4.

In (super-)singular situations, the group M must be of coclass cc(M) ≥ 2, and capitulation
of type κ′′′ = (2000) is impossible.

Proof. We know that the tame ranks are r5 = r6 = r8 = r9 = 2, and thus I5, I6, I8, I9 ∈ {9, 27}, in
particular, I5 = I8 = 27, whence certainly N ≥ 1. Further, the wild ranks are r1 = r2 = r10 = 3
iff m 6= 0, and r3 = r4 = r7 = 3 iff m̃ 6= 0.

In the regular situation where the 3-class groups of kpq and k̃pq are elementary bicyclic, tight
bounds arise for the abelian quotient invariants α of the group M:

The first scenario, m 6= 0, is equivalent to N = 1, with wild ranks h3(Bj) = h3(kpq) = 9, for

j = 1, 2, 10, h3(Bj) = h3(k̃pq) = 9, for j = 3, 4, 7, and tame ranks h3(Bj) = Ij = 9, for j = 6, 9,
h3(Bj) = Ij = 27, for j = 5, 8, that is α = [111, 11, 11, 11] and consequently κ = (2000), since
〈81, 7〉 is unique with this α.

The other three scenarios share m = 0, and an explicit transposition between B5, B6, re-
spectively B5, B9, and B6, B8, respectively B8, B9, giving rise to κ = (21 ∗ ∗), and common
h3(Bj) = Ij = 27, for j = 5, 6, 8, 9, implying α = [111, 111, ∗, ∗].

The second scenario with N = 2 is supplemented by Ij = 9, h3(Bj) = 3 · h3(kpq) = 27, for

j = 1, 2, 10. Ij = 9, h3(Bj) = 3 · h3(k̃pq) = 27, for j = 3, 4, 7, giving rise to α = [111, 111, 21, 21],
κ = (2100), characteristic for 〈729, 34..39〉 (Cor. 4).

The third scenario with N = 3 is supplemented by Ij = 27, h3(Bj) = 9 · h3(kpq) = 81,

for j = 1, 2, 10, but still Ij = 9, h3(Bj) = 3 · h3(k̃pq) = 27, for j = 3, 4, 7, giving rise to
α = [111, 111, 22, 21], κ = (2110), characteristic for 〈729, 41〉.

The fourth scenario with N = 4 is supplemented by Ij = 27, h3(Bj) = 9 · h3(kpq) = 81, for
j = 1, 2, 10, Ij = 27, h3(Bj) = 9 · h3(kpq) = 81, for j = 3, 4, 7, giving rise to α = [111, 111, 22, 22],
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κ = (2111), characteristic for either 〈2187, 65|67〉 or 〈6561, 714..719|738..743〉 with coclass cc = 3.
If d2(M) = 5, then tower length must be `3(kµ) ≥ 3 For this minimal capitulation type H.4,
κ = (2111), all transfer kernels are cyclic of order 3, and the minimal unit norm indices correspond
to maximal subfield unit indices.

In (super-)singular situations, the 3-class groups of kpq and k̃pq are non-elementary bicyclic,
and even in the simplest case m 6= 0, m̃ 6= 0, we have Ij = 3, 27 | h3(Bj) = h3(kpq), for j = 1, 2, 10,

Ij = 3, 27 | h3(Bj) = h3(k̃pq), for j = 3, 4, 7, which prohibits the occurrence of abelian type
invariants (11), required for 3-groups of coclass cc(M) = 1 (maximal class). �

Corollary 11. (Uniformity of the quartet for III.7.) The components of the quartet, all with
3-rank two, share a common capitulation type κ(kµ), common abelian type invariants α(kµ), and
a common second 3-class group Gal(F2

3(kµ)/kµ), for 1 ≤ µ ≤ 4.

Proof. This is a consequence of Theorem 17 and Table 16. �

Example 7. We have found prototypes for Graph III.7 in the form of minimal conductors for each
scenario in Theorem 17 as follows. There are regular cases: c = 4 599 with symbol {9↔ 73← 7},
v∗ = 1, and G = M = 〈81, 7〉4; c = 31 707 with symbol {9 ↔ 271 ← 13}, v∗ = 2, and G = M =
〈81, 7〉4; c = 76 741 with symbol {577 ↔ 19 ← 7}, v∗ = 2, and M = 〈2187, 65|67〉4 of elevated
coclass 3; and c = 90 243 with symbol {271 ↔ 9 ← 37}, v∗ = 2, and M = 〈729, 41〉4. There is
also a singular case c = 61 243 with symbol {673↔ 7← 13}, v∗ = 3, and M = 〈2187, 253〉4; and
super-singular cases c = 69 979 with symbol {769↔ 7← 13}, v∗ = 4, and M = 〈6561, 676|677〉4
of elevated coclass 3; and c = 86 821 with symbol {79↔ 157← 7}, v∗ = 4, and M = 〈729, 37..39〉4.

In Table 17, we summarize the prototypes of Graph III.7 in the same way as in Table 13.

Table 17. Prototypes for Graph III.7

No. c q ↔ p← r v∗ v m, n ṽ m̃, ñ capitulation type M `3(k)

1 4 599 9↔ 73← 7 1 2 1, 2 2 1, 2 a.3∗ 〈81, 7〉 = 2

2 12 051 13↔ 103← 9 1 2 1, 1 2 1, 1 a.3∗ 〈81, 7〉 = 2

6 31 707 9↔ 271← 13 2 2 1, 0 2 1, 0 a.3∗ 〈81, 7〉 = 2

21 76 741 577↔ 19← 7 2 2 0, 1 2 0, 1 H.4 〈2187, 65|67〉 ≥ 3

27 90 243 271↔ 9← 37 2 2 0, 1 2 0, 1 d.19 〈729, 41〉 ≥ 2

13 61 243 673↔ 7← 13 3 3 0, 1 3 1, 0 b.10 〈2187, 253〉 ≥ 2

17 69 979 769↔ 7← 13 4 3 0, 1 3 0, 1 d.19 〈6561, 676|677〉 ≥ 3

25 86 821 79↔ 157← 7 4 3 1, 1 3 1, 2 b.10 〈729, 37..39〉 ≥ 2

8.4. Category III, Graph 8. Let (k1, . . . , k4) be a quartet of cyclic cubic number fields belonging
to Graph 8 of Category III with combined cubic residue symbol [p, q, r]3 = {r → p ↔ q ← r} of
three prime(power)s dividing the conductor c = pqr.

Proposition 12. (Quartet with 3-rank two for III.8.) For fixed µ ∈ {1, 2, 3, 4}, let p, q, r be
the prime ideals of kµ over p, q, r, that is, pOkµ = p3, qOkµ = q3, rOkµ = r3, then the principal
factor of kµ is A(kµ) = r, and the 3-class group of kµ is

(8.21) Cl3(kµ) = 〈[p], [q]〉 ' (3, 3).

The unramified cyclic cubic relative extensions of kµ are among the absolutely bicyclic bicubic fields
Bi, 1 ≤ i ≤ 10. The wild ranks for i = 1, 2, 3, 4, 7, 10 are ri = 2, independently of m,n, m̃, ñ. For
each µ, there are two tame extensions Bj/kµ, B`/kµ with the following properties.
The first, Bj, has norm class group NBj/kµ(Cl3(Bj)) = 〈[p]〉, cyclic transfer kernel

(8.22) ker(TBj/kµ) = 〈[q]〉
of order 3, and elementary tricyclic 3-class group Cl3(Bj) = 〈[P1], [P2], [P3]〉 ' (3, 3, 3), gen-
erated by the classes of the prime ideals of Bj over pOBj = P1P2P3.
The second, B`, has norm class group NB`/kµ(Cl3(B`)) = 〈[q]〉, cyclic transfer kernel

(8.23) ker(TB`/kµ) = 〈[p]〉
of order 3, and elementary tricyclic 3-class group Cl3(B`) = 〈[Q1], [Q2], [Q3]〉 ' (3, 3, 3), gen-
erated by the classes of the prime ideals of B` over qOB` = Q1Q2Q3.
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The pair (j, `) forms a mandatory transposition of the transfer kernel type κ(kµ). The re-
maining two Bi > kµ, i 6= j, i 6= `, have norm class group 〈[pq]〉, respectively 〈[pq2]〉, necessar-

ily non-elementary bicyclic 3-class group of order 27 | h3(Bi) = (Ui:Vi)
3 h3(kpq), respectively

(Ui:Vi)
3 h3(k̃pq), and transfer kernel

ker(TBi/kµ) ≥ 〈[pmqn]〉, respectively ≥ 〈[pm̃qñ]〉,

providing the option of a possible fixed point in the transfer kernel type κ(kµ).

Proof. Since r → p, there are two principal factors A(kpr) = A(k̃pr) = r. Since q ← r, there are

two further principal factors A(kqr) = A(k̃qr) = r. Since q ← r → p is universally repelling, we
also have four other principal factors A(kµ) = r, for all 1 ≤ µ ≤ 4 according to [2, Prop. 4.6, p.
49]. Since r = αOkµ is a principal ideal, its class [r] = 1 is trivial, whereas the classes [p], [q] are
non-trivial and generate Cl3(kµ).

There are four tame bicyclic bicubic fields, B5 = k1k3kpk̃qr, B6 = k1k4kqk̃pr, B8 = k2k4kpkqr,
B9 = k2k3kqkpr, satisfying 9 | h3(Bi) = (Ui : Vi), for i ∈ {5, 6, 8, 9}. Consequently, we must have
the indices Ii = (Ui : Vi) ∈ {9, 27}, and thus the matrix ranks r5 = r6 = r8 = r9 = 2.

On the other hand, there are six wild bicyclic bicubic fields, B1 = k1kpqkprkqr, B2 = k2kpqk̃prk̃qr,

B3 = k3k̃pqk̃prkqr, B4 = k4k̃pqkprk̃qr, B7 = k1k2krk̃pq, B10 = k3k4krkpq, with h3(Bi) > (Ui : Vi).
For these bicyclic bicubic fields Bi, i ∈ {1, 2, 3, 4, 7, 10}, the rank ri is calculated with row

operations on the associated principal factor matrices Mi:

M1 = M2 =


0 0 1

m n 0

0 0 1

0 0 1

, M10 =


0 0 1

0 0 1

0 0 1

m n 0

, M3 = M4 =


0 0 1

m̃ ñ 0

0 0 1

0 0 1

, M7 =


0 0 1

0 0 1

0 0 1

m̃ ñ 0

.

For B1 = k1kpqkprkqr and B2 = k2kpqk̃prk̃qr, M1 = M2 immediately leads to rank r1 = r2 = 2,
since (m,n) 6= (0, 0), and similarly, for B10 = k3k4krkpq, M10 leads to rank r10 = 2.

For B3 = k3k̃pqk̃prkqr, and B4 = k4k̃pqkprk̃qr, M3 = M4 immediately leads to rank r3 = r4 = 2,

since (m̃, ñ) 6= (0, 0), and similarly, for B7 = k1k2krk̃pq, M7 leads to rank r7 = 2.
So Graph 8 of Category III is the unique situation where ri = 2, for all 1 ≤ i ≤ 10, without
any conditions, and thus h3(Bi) = Ii

3 h3(kpq), for i ∈ {1, 2, 10}, and h3(Bi) = Ii
3 h3(k̃pq), for

i ∈ {3, 4, 7}, where Ii = (Ui : Vi) ∈ {9, 27}, and 9 | h3(kpq), 9 | h3(k̃pq).
In each case, the minimal subfield unit index (Ui : Vi) = 9 corresponds to the maximal unit

norm index (U(kµ) : NBi/kµ(Ui)) = 3, associated with a total transfer kernel # ker(TBi/kµ) = 9,
whenever kµ < Bi 1 ≤ µ ≤ 4, 1 ≤ i ≤ 10.

According to Theorem 8, the unramified cyclic cubic relative extensions of kµ among the ab-
solutely bicyclic bicubic subfields of the 3-genus field k∗ = kpkqkr are B1, B5, B6, B7, for µ = 1,
B2, B7, B8, B9, for µ = 2, B3, B5, B9, B10, for µ = 3, and B4, B6, B8, B10, for µ = 4.

Since p splits in kq, it also splits in B6 = k1k4kqk̃pr and B9 = k2k3kqkpr.

Since q is principal in kq, [q] capitulates in B6 = k1k4kqk̃pr and B9 = k2k3kqkpr.
For (µ, j) ∈ {(1, 6), (4, 6), (2, 9), (3, 9)}, the minimal unit norm index (U(kµ) : NBj/kµ(Uj)) = 1,

associated to the partial transfer kernel ker(TBj/kµ) = 〈[q]〉, corresponds to the maximal subfield
unit index h3(Bj) = (Uj : Vj) = 27, giving rise to the characteristic abelian type invariants
Cl3(Bj) = 〈[P1], [P2], [P3]〉 ' (3, 3, 3) generated by the classes of the prime ideals of Bj over
pOBj = P1P2P3. The field Bj , which contains kµ, has norm class group NBj/kµ(Cl3(Bj)) = 〈[p]〉.

Since q splits in kp, it also splits in B5 = k1k3kpk̃qr and B8 = k2k4kpkqr.

Since p is principal in kp, [p] capitulates in B5 = k1k3kpk̃qr and B8 = k2k4kpkqr.
For (µ, `) ∈ {(1, 5), (3, 5), (2, 8), (4, 8)}, the minimal unit norm index (U(kµ) : NB`/kµ(U`)) = 1,

associated to the partial transfer kernel ker(TB`/kµ) = 〈[p]〉, corresponds to the maximal subfield
unit index h3(B`) = (U` : V`) = 27, giving rise to the characteristic abelian type invariants
Cl3(B`) = 〈[Q1], [Q2], [Q3]〉 ' (3, 3, 3) generated by the classes of the prime ideals of B` over
qOB` = Q1Q2Q3. The field B`, which contains kµ, has norm class group NB`/kµ(Cl3(B`)) = 〈[q]〉.
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Since pmqn is principal in kpq, [pmqn] capitulates in B1 = k1kpqkprkqr, B2 = k2kpqk̃prk̃qr, and
B10 = k3k4krkpq.

Since pm̃qñ is principal in k̃pq, [pm̃qñ] capitulates in B3 = k3k̃pqk̃prkqr, B4 = k4k̃pqkprk̃qr, and

B7 = k1k2krk̃pq.
The remaining two Bi > kµ, i ∈ {1, 2, 3, 4, 7, 10}, more precisely, i ∈ {1, 7} for µ = 1, and

i ∈ {2, 7} for µ = 2, and i ∈ {3, 10} for µ = 3, and i ∈ {4, 10} for µ = 4, have norm class
group 〈[pq]〉, respectively 〈[pq2]〉, and minimal transfer kernel ker(TBi/kµ) ≥ 〈[pmqn]〉, respectively

ker(TBi/kµ) ≥ 〈[pm̃qñ]〉. �

Proposition 12 and parts of its proof are now summarized in Table 18, with transposition
in boldface font, based on Corollary 2. In this table, we give the norm class group (NCG)
NBi/kµ(Cl3(Bi)) and the transfer kernel (TK) ker(TBi/kµ), also in the symbolic form κ with place
holders 1 ≤ x, x̃, y, ỹ, z, z̃, w, w̃ ≤ 4, for each collection of four unramified cyclic cubic relative
extensions Bj , j = 1, . . . , 10, of each base field kµ, µ = 1, . . . , 4, of the quartet.

Table 18. Norm class groups and minimal transfer kernels for Graph III.8

Base k1 k2 k3 k4
Ext B1 B5 B6 B7 B2 B7 B8 B9 B3 B5 B9 B10 B4 B6 B8 B10

NCG pq q p pq2 pq pq2 q p pq q p pq2 pq p q pq2

TK pmqn p q pm̃qñ pmqn pm̃qñ p q pm̃qñ p q pmqn pm̃qñ q p pmqn

κ x 3 2 x̃ y ỹ 4 3 z̃ 3 2 z w̃ 3 2 w

Theorem 18. (Second 3-class group for III.8.) Let (k1, . . . , k4) be the quartet of cyclic cubic
number fields sharing the common conductor c = pqr, belonging to Graph 8 of Category III with
combined cubic residue symbol [p, q, r]3 = {r → p↔ q ← r}.

To identify the second 3-class group M = Gal(F2
3(kµ)/kµ), 1 ≤ µ ≤ 4, let the principal factor

of kpq, respectively k̃pq, be A(kpq) = pmqn, respectively A(k̃pq) = pm̃qñ, and additionally assume

the regular situation where both Cl3(kpq) ' Cl3(k̃pq) ' (3, 3) are elementary bicyclic, whence
(m,n) = (m̃, ñ).

Then there are several minimal transfer kernel types (mTKT) κ0 of kµ, 1 ≤ µ ≤ 4, and
the other possible capitulation types in ascending order κ0 < κ′ < κ′′, ending in the mandatory
κ′′ = (2100), type b.10:
either κ0 = (2111), type H.4, κ′ = (2110), type d.19, for P = 1, or κ0 = (2133), type F.11,
κ′ = (2130), type d.23, or (2103), type d.25, for P = 2, and the second 3-class group is M '

(8.24)



〈729, 34..39〉, α = [111, 111, 21, 21], κ = (2100) if N = 2,

〈729, 41〉, α = [111, 111, 22, 21], κ = (2110) if P = 1, N = 3,

〈729, 42|43〉, α = [111, 111, 22, 21], κ = (2130)|(2140) if P = 2, N = 3,

〈2187, 65|67〉, α = [111, 111, 22, 22], κ = (2111) if P = 1, N = 4,

〈2187, 66|73〉, α = [111, 111, 22, 22], κ = (2133) if P = 2, N = 4,

where N := #{1 ≤ j ≤ 10 | kµ < Bj , Ij = 27} and P is the number of prime divisors of pmqn. In
any case, the 3-class field tower may have a group G = Gal(F∞3 (kµ)/kµ) bigger than M although
d2(M) ≤ 4. Further, III.8 is the unique graph where the second 3-class group M = Gal(F2

3(kµ)/kµ)
cannot be of maximal class.

Since the group order cannot be specified in the (super-)singular situation, only the capitu-

lation type can be given. Additionally, the number P̃ of prime divisors of pm̃qñ is used, and two
cases are separated.
If (m,n) = (m̃, ñ), then P = P̃, and all four types κ(kµ), µ = 1, . . . , 4, coincide:

(8.25)


κ = (2100), b.10 if N = 2,

κ = (2111), H.4 if P = 1, N = 4,

κ = (2133), F.11 if P = 2, N = 4.
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If (m,n) 6= (m̃, ñ), then the number of coinciding types must be indicated by formal exponents:

(8.26)



κ = (2100)4, b.10 if N = 2,

κ = (2130)2, d.23, κ = (2140)2, d.25 if N = 3,

κ = (2112)4, F.7 if P = P̃ = 1, N = 4,

κ = (2134)2, G.16, κ = (2143)2, G.19 if P = P̃ = 2, N = 4,

κ = (2131)2, F.12, κ = (2113)2, F.13 if P 6= P̃, N = 4.

Proof. We normalize the transpositions in Table 18 by the following convention κ = (21 ∗ ∗) ∼
(∗32∗) ∼ (∗ ∗ 43), taking the leading type of three equivalent types.

Since the transfer kernels ker(TBi/kµ) for the tame extensions with i ∈ {5, 6, 8, 9} are partial,
the corresponding indices Ii = (Ui : Vi) = 27 of subfield units must be maximal, whence nec-
essarily N ≥ 2. The associated 3-class numbers h3(Bi) = 27 are consistent with occurrence of
two elementary tricyclic 3-class groups Cl3(Bi) ' (3, 3, 3), connected with a transposition in the
capitulation type κ(kµ) = (21 ∗ ∗), according to Proposition 12.

In the proof of this proposition, it was also derived that, due to ri = 2, the 3-class numbers
of the wild extensions are given by h3(Bi) = Ii

3 h3(kpq) ≥ 27, for i ∈ {1, 2, 10}, and h3(Bi) =
Ii
3 h3(k̃pq) ≥ 27, for i ∈ {3, 4, 7}, where Ii = (Ui : Vi) ∈ {9, 27}, and 9 | h3(kpq), 9 | h3(k̃pq).

It follows that maximal class cc(M) = 1 is prohibited for two reasons, firstly by the Artin
pattern κ ∼ (21κ3κ4), α ∼ [111, 111, α3, α4], and secondly by the bi-polarization of order at least
27, which implies that α3 and α4 are bicyclic equal to (21) or bigger [16, pp. 289–292].

In fact, even cc(M) = 2 is very restricted, because the candidates for M must be descendants
of the group 〈243, 3〉. The other two groups with two or three components (111) in the abelian
type invariants α are discouraged, since κ ∼ (1133), α ∼ [21, 111, 21, 111] for 〈243, 7〉 does not
contain a transposition, and in κ ∼ (2111), α ∼ [111, 21, 111, 111] for 〈243, 4〉, the transposition
in κ is not associated with two elementary tricyclic components of α.

If N = 2, then the Artin pattern α = [111, 111, 21, 21], κ = (2100) identifies one of the six
groups 〈729, 34..39〉, α = [111, 111, 21, 21], since 〈243, 3〉 is forbidden by Corollary 4.

If N = 3, then generally α = [111, 111, 22, 21], with bipolarization consisting of copolarization
(21), i.e. coclass 2, and polarization (22), i.e., class 4. Now, if P = 1, then the capitulation type
κ = (2110) ∼ (2120) contains a repetition, which identifies the group 〈729, 41〉. On the other
hand, if P = 2, then the capitulation type κ = (2130) either contains a fixed point, which gives
〈729, 42〉, or κ = (2140) neither contains a repetition nor a fixed point, which gives 〈729, 43〉.

If N = 4, then generally α = [111, 111, 22, 22], but a finer distinction is provided by P. If
P = 1, then the capitulation type κ = (2111) ∼ (2122) contains two repetitions and becomes
nearly constant, which identifies the groups 〈2187, 65|67〉 of coclass 3. However, if P = 2, then a
fixed point and its repetition occurs in the capitulation type κ = (2133) ∼ (2144), which leads to
the groups 〈2187, 66|73〉, α = [111, 111, 22, 22].
Concerning the (super-)singular situation, two cases are distinguished. If (m,n) = (m̃, ñ), then
P = 1, i.e., (m,n) ∈ {(0, 1), (1, 0)}, implies two identical repetitions in κ0 ∼ (2111) ∼ (2122),
H.4; but P = 2, i.e., (m,n) ∈ {(1, 1), (1, 2), (2, 1)}, produces a single fixed point in κ0 ∼ (2133) ∼
(2144), F.11. These two minimal transfer kernel types for N = 4 both expand to κ′′ ∼ (2100)
for N = 2. All three cases are uniform. If N = 3 were possible, then P = 1 would lead to type
κ ∼ (2110) ∼ (2120), d.19, and P = 2 would either imply type κ ∼ (2130), d.23, or κ ∼ (2140),
d.25. The latter case would be non-uniform, but N = 3 does not seem to occur at all.

If (m,n) 6= (m̃, ñ), then nevertheless P = P̃ is possible, and then P = 1 implies two distinct
repetitions in κ ∼ (2112) ∼ (2121), F.7, uniformly, whereas P = 2 leads to either two fixed points
in κ ∼ (2134), G.16 or a second transposition in κ ∼ (2143), G.19. These permutation types
would be non-uniform in two sub-doublets, but they are obviously forbidden, for an unknown
reason. Finally, P 6= P̃ admits several distinct realizations with identical result: it always leads
to a repetition, and additionally either to a fixed point in κ ∼ (2131), F.12, or a non-fixed point
in κ ∼ (2131), F.13, non-uniformly in two sub-doublets. �
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Corollary 12. (Non-uniformity of the quartet for III.8.) If (m,n) = (m̃, ñ), in particular
always in the regular situation, the components of the quartet, all with 3-rank two, uniformly
share a common capitulation type κ(kµ), common abelian type invariants α(kµ), and a common
second 3-class group Gal(F2

3(kµ)/kµ), for 1 ≤ µ ≤ 4. Otherwise, the invariants may be non-
uniform, divided in two sub-doublets.

Proof. In the regular case, we must have (m,n) = (m̃, ñ). All TKTs are either equivalent to F.11,
with mandatory fixed point, if pmqn ∈ {pq, pq2}, or to H.4, if pmqn ∈ {p, q}, according to Table
18. The potential non-uniformity was proved in Theorem 18. �

In Table 19, we summarize the prototypes of Graph III.8 in the same way as in Table 13. The
group with multifurcation of order four is abbreviated by P7 := 〈2187, 64〉. See the table and tree
diagram [18, § 11, pp. 96–100, Tbl. 1, Fig. 5].

Table 19. Prototypes for Graph III.8

No. c r → p↔ q ← r v∗ v m, n ṽ m̃, ñ capitulation type M `3(k)

1 20 293 13→ 7↔ 223← 13 1 2 2, 1 b.10 〈729, 37..39〉 ≥ 2

2 41 509 31→ 13↔ 103← 31 1 2 1, 1 b.10 〈729, 37..39〉 ≥ 2

3 46 341 19→ 9↔ 271← 19 2 2 0, 1 b.10 〈729, 37..39〉 ≥ 2

5 52 497 19→ 9↔ 307← 19 1 2 2, 1 F.11 〈2187, 66|73〉 ≥ 2

7 92 911 13→ 7↔ 1021← 13 1 2 1, 1 F.11 〈2187, 66|73〉 ≥ 2

18 191 007 19→ 9↔ 1117← 19 2 2 1, 0 b.10 〈729, 37..39〉 ≥ 2

26 231 469 43→ 7↔ 769← 43 4 3 0, 1 3 0, 1 H.4 P7 −#2; 34|35 ≥ 3

40 387 729 9→ 67↔ 643← 9 3 3 2, 1 3 2, 1 F.11 P7 −#2; 36|38 ≥ 2

92 756 499 43→ 73↔ 241← 43 3 3 0, 1 3 1, 1 F.12 P7 −#2; 43|46|51|53 ≥ 2

F.13 P7 −#2; 41|47|50|52 ≥ 3

93 758 233 7→ 19↔ 5701← 7 3 3 1, 1 3 1, 1 F.11 P7 −#2; 36|38 ≥ 2

101 806 869 7→ 73↔ 1579← 7 5 3 1, 1 5 1, 1 F.11 ≥ 2

105 831 001 67→ 79↔ 157← 67 4 3 1, 1 3 2, 1 d.23 〈6561, 678〉 ≥ 3

d.25 〈6561, 679|680〉 ≥ 3

102 945 117 19→ 9↔ 5527← 19 3 3 1, 0 3 1, 1 F.12 P7 −#2; 43|46|51|53 ≥ 2

F.13 P7 −#2; 41|47|50|52 ≥ 3

162 1 301 287 31→ 13↔ 3229← 31 4 4 0, 1 3 2, 1 d.23 ≥ 2

d.25 ≥ 2

164 1 305 937 31→ 103↔ 409← 31 6 4 1, 1 5 1, 1 F.11 ≥ 2

183 1 463 917 13→ 7↔ 16087← 13 3 3 0, 1 3 1, 0 F.7 P7 −#2; 55|56|58 ≥ 2

185 1 483 767 19→ 9↔ 8677← 19 3 3 2, 1 3 0, 1 F.12 P7 −#2; 43|46|51|53 ≥ 2

F.13 P7 −#2; 41|47|50|52 ≥ 2

253 2 068 587 19→ 9↔ 12097← 19 5 3 1, 1 5 0, 1 F.12 ≥ 2

F.13 ≥ 2

385 2 991 987 19→ 9↔ 17497← 19 3 3 1, 0 3 2, 1 F.12 P7 −#2; 43|46|51|53 ≥ 2

F.13 P7 −#2; 41|47|50|52 ≥ 2

468 3 556 699 97→ 37↔ 991← 97 6 5 1, 1 3 2, 1 d.23 ≥ 2

d.25 ≥ 2

651 4 686 019 109→ 13↔ 3307← 109 4 4 0, 1 3 1, 0 F.7 P7 −#2; 55|56|58 ≥ 2

Example 8. Since III.8 is the graph with most sparse population by far, Ayadi [2, pp. 89–
90] was unable to give any examples. We found many, but not all, prototypes. These are the
minimal conductors for each scenario in Theorem 18. In the regular case, they have been found
for N ∈ {2, 4}, but not for N = 3. There are some regular prototypes: c = 20 293 with symbol
{13 → 7 ↔ 223 ← 13}, v = 1, and M = 〈729, 37..39〉; c = 46 341 with symbol {19 → 9 ↔ 271 ←
19}, v = 2, and M = 〈729, 37..39〉; c = 52 497 with symbol {19 → 9 ↔ 307 ← 19}, v = 1, and
M = 〈2187, 66|73〉. Furthermore, there is a super-singular prototype c = 231 469 with symbol
{43 → 7 ↔ 769 ← 43}, type H.4, and M = 〈2187, 64〉 − #2; i, i ∈ {34, 35}, with d2(M) = 5,
outside of the library [5], not treated by Theorem 18.

8.5. Category III, Graph 9. Let (k1, . . . , k4) be a quartet of cyclic cubic number fields sharing
the common conductor c = pqr, belonging to Graph 9 of Category III with combined cubic residue
symbol [p, q, r]3 = {r ← p↔ q ← r}.

Proposition 13. (Quartet with 3-rank two for III.9.) For fixed µ ∈ {1, 2, 3, 4}, let p, q, r be
the prime ideals of kµ over p, q, r, that is, pOkµ = p3, qOkµ = q3, rOkµ = r3, then the principal
factor of kµ is A(kµ) = p, and the 3-class group of kµ is

(8.27) Cl3(kµ) = 〈[q], [r]〉 ' (3, 3).
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In terms of n and ñ in A(kpq) = pmqn and A(k̃pq) = pm̃qñ, the ranks of the wild extensions are

(8.28) r1 = r2 = r10 = 3 iff n 6= 0 iff q | A(kpq) and r3 = r4 = r7 = 3 iff ñ 6= 0 iff q | A(k̃pq).

Proof. By Proposition 3, principal factors are A(kpr) = A(k̃pr) = p, since r ← p, and A(kqr) =

A(k̃qr) = r, since q ← r. Further, by Proposition 4, A(kµ) = p, for all 1 ≤ µ ≤ 4, since p is
universally repelling r ← p → q. Since p = αOkµ is a principal ideal, its class [p] = 1 is trivial,
whereas the classes [q], [r] are non-trivial. By Corollary 3,

since q is principal ideal in kq, the class [q] capitulates in B6 = k1k4kqk̃pr and B9 = k2k3kqkpr;

since r is principal ideal in kr, the class [r] capitulates in B7 = k1k2krk̃pq and B10 = k3k4krkpq.

However, since r is principal ideal in kqr and k̃qr, the class [r] also capitulates in B1 = k1kpqkprkqr,

B2 = k2kpqk̃prk̃qr, B3 = k3k̃pqk̃prkqr, B4 = k4k̃pqkprk̃qr, B5 = k1k3kpk̃qr, and B8 = k2k4kpkqr.
For the wild bicyclic bicubic fields Bj , j ∈ {1, 2, 3, 4, 7, 10}, the rank rj is calculated with row

operations on the associated principal factor matrices Mj :

M1 = M2 =


1 0 0

m n 0

1 0 0

0 0 1

, M10 =


1 0 0

1 0 0

0 0 1

m n 0

, M3 = M4 =


1 0 0

m̃ ñ 0

1 0 0

0 0 1

, M7 =


1 0 0

1 0 0

0 0 1

m̃ ñ 0

.

For B1 = k1kpqkprkqr and B2 = k2kpqk̃prk̃qr, M1 = M2 leads to the decisive pivot element n in
the middle column, for B10 = k3k4krkpq, M10 also leads to n. So rank r1 = r2 = r10 = 3 iff n 6= 0.

For B3 = k3k̃pqk̃prkqr and B4 = k4k̃pqkprk̃qr, M3 = M4 leads to the decisive pivot element ñ

in the middle column, for B7 = k1k2krk̃pq, M7 also leads to ñ. So rank r3 = r4 = r7 = 3 iff
ñ 6= 0. �

In terms of capitulation targets in Corollary 2, Proposition 13 and parts of its proof are now
summarized in Table 20 with transpositions in bold font.

Table 20. Norm class groups and minimal transfer kernels for Graph III.9

Base k1 k2 k3 k4
Ext B1 B5 B6 B7 B2 B7 B8 B9 B3 B5 B9 B10 B4 B6 B8 B10

NCG qr q r qr2 qr2 qr q r qr2 q r qr qr r q qr2

TK r r q r r r r q r r q r r q r r

κ 3 3 2 3 4 4 4 3 3 3 2 3 2 3 2 2

Theorem 19. (Second 3-class group for III.9.) To identify the second 3-class group M =

Gal(F2
3(kµ)/kµ), 1 ≤ µ ≤ 4, let the principal factor of kpq, respectively k̃pq, be A(kpq) = pmqn,

respectively A(k̃pq) = pm̃qñ, and additionally assume the regular situation where both Cl3(kpq) '
Cl3(k̃pq) ' (3, 3) are elementary bicyclic, whence (m,n) = (m̃, ñ).

Then the minimal transfer kernel type (mTKT) κ0 of kµ, 1 ≤ µ ≤ 4, and other possible
capitulation types in ascending order κ0 < κ′ < κ′′ < κ′′′, ending in the mandatory κ′′′ = (2000),
type a.3∗, are κ0 = (2111), type H.4, κ′ = (2110), type d.19, κ′′ = (2100), type b.10, and the
second 3-class group is M '

(8.29)


〈81, 7〉, α = [111, 11, 11, 11], κ = (2000) if n 6= 0, N = 1,

〈729, 34..39〉, α = [111, 111, 21, 21], κ = (2100) if n = 0, N = 2,

〈729, 41〉, α = [111, 111, 22, 21], κ = (2110) if n = 0, N = 3,

〈2187, 65|67〉, α = [111, 111, 22, 22], κ = (2111) if n = 0, N = 4,

where N := #{1 ≤ j ≤ 10 | kµ < Bj , Ij = 27}. Only in the first case, the 3-class field tower
has certainly the group G = Gal(F∞3 (kµ)/kµ) ' M and length `3(kµ) = 2, otherwise `3(kµ) ≥ 3
cannot be excluded, even if d2(M) ≤ 4.
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Proof. The essence of the proof is a systematic evaluation of the facts proved in Proposition 13
and illustrated by Table 20, ordered by increasing indices Ij := (Uj : Vj) of subfield units and,
accordingly, by Lemma 2, shrinking transfer kernels ker(TBj/kµ), with 1 ≤ j ≤ 10, 1 ≤ µ ≤ 4.

(1) For the maximal TKT, κ′′′ ∼ (2000), called a.3∗ in conjunction with ATI [111, 11, 11, 11],
we must have n 6= 0, ñ 6= 0 and by (8.28) wild ranks rj = 3 and indices Ij = 3 for all
j = 1, 2, 3, 4, 7, 10, causing eight (because 7 is used twice over k1 and k2 and 10 is used

twice over k3 and k4) minimal 3-class numbers h3(Bj) = h3(kpq) = h3(k̃pq) = 9, by (8.3),
and ATI Cl3(Bj) ' (11), characterisic for a group of coclass cc(M) = 1, i.e. maximal
class, namely M ' 〈81, 7〉. However, the elementary tricyclic component (111) of the ATI
requires tame indices Ij = 27 for j = 5, 8, and thus N = 1 for each 1 ≤ µ ≤ 4 (because 5
is used twice over k1 and k3 and 8 is used twice over k2 and k4).

(2) Next, one of the total TK shrinks to a transposition, κ′′ ∼ (2100), b.10, which requires a
group of coclass cc(M) ≥ 2, implying, firstly, tame indices Ij = 27 also for j = 6, 9, and
thus N = 2 for each 1 ≤ µ ≤ 4 (because 6 is used twice over k1 and k4 and 9 is used twice
over k2 and k3), and, secondly, (from now on) necessarily both n = ñ = 0, implying wild
ranks rj = 2 indices Ij ∈ {9, 27} for all j = 1, 2, 3, 4, 7, 10, here Ij = 9, 3-class numbers

h3(Bj) = 3 · h3(kpq) = 3 · h3(k̃pq) = 3 · 9 = 27, and thus ATI α ∼ [111, 111, 21, 21], leading
to M ' 〈729, 34..39〉, in view of Corollary 4.

(3) Now another total TK shrinks to a repetition, κ′ ∼ (2110), d.19, the first three wild
indices for j = 1, 2, 10 become maximal Ij = 27, causing N = 3 and four (because 10 is

used twice over k3 and k4) maximal new 3-class numbers h3(Bj) = 9 ·h3(k̃pq) = 9 ·9 = 81,
and thus ATI α ∼ [111, 111, 22, 21], uniquely identifying M ' 〈729, 41〉.

(4) Finally, for the minimal TKT, κ0 ∼ (2111), H.4, the remaining three wild indices for
j = 3, 4, 7 become maximal Ij = 27, causing N = 4 and four (because 7 is used twice over

k1 and k2) maximal new 3-class numbers h3(Bj) = 9 · h3(k̃pq) = 9 · 9 = 81, and thus ATI
α ∼ [111, 111, 22, 22], enforcing a group of coclass cc(M) = 3 namely M ' 〈2187, 65|67〉.

�

Corollary 13. (Uniformity of the quartet for III.9.) The components of the quartet, all with
3-rank two, share a common capitulation type κ(kµ), common abelian type invariants α(kµ), and
a common second 3-class group Gal(F2

3(kµ)/kµ), for 1 ≤ µ ≤ 4.

Proof. This follows immediately from Theorem 19. �

Example 9. Prototypes for Graph III.9 are the minimal conductors for each scenario in Theorem
19. They have been found for all N ∈ {1, 2, 3, 4}.

There are regular cases: c = 16 471 with symbol {13 ← 181 ↔ 7 ← 13}, v∗ = 1, and
G = M = 〈81, 7〉; c = 89 487 with symbol {9 ← 163 ↔ 61 ← 9}, v∗ = 2, and M = 〈729, 41〉;
c = 109 291 with symbol {7 ← 13 ↔ 1201 ← 7}, v∗ = 2, and M = 〈729, 34..36〉; c = 193 921
with symbol {7← 13↔ 2131← 7}, v∗ = 2, and M = 〈729, 37..39〉; and, with extreme statistic
delay, c = 707 517 with ordinal number 145, symbol {9 ← 127 ↔ 619 ← 9}, v∗ = 2, and
M = 〈2187, 65|67〉 with d2(M) = 5.

Only one super-singular case for c < 2·105: It is c = 197 239 with symbol 7← 1483↔ 19← 7,
v∗ = 4, and M = 〈729, 37..39〉. Astonishingly, no bigger order and coclass of M, due to n 6= 0.

In Table 21, we summarize the prototypes of Graph III.9 in the same way as in Table 13.

Table 21. Prototypes for Graph III.9

No. c r ← p↔ q ← r v∗ v m, n ṽ m̃, ñ capitulation type M `3(k)

1 16 471 13← 181↔ 7← 13 1 2 1, 1 2 1, 1 a.3∗ 〈81, 7〉 = 2

15 89 487 9← 163↔ 61← 9 2 2 1, 0 2 1, 0 d.19 〈729, 41〉 ≥ 2

19 109 291 7← 13↔ 1201← 7 2 2 1, 0 2 1, 0 b.10 〈729, 34..36〉 ≥ 2

28 193 921 7← 13↔ 2131← 7 2 2 1, 0 2 1, 0 b.10 〈729, 37..39〉 ≥ 2

31 197 239 7← 1483↔ 19← 7 4 3 0, 1 3 0, 1 b.10 〈729, 37..39〉 ≥ 2

145 707 517 9← 127↔ 619← 9 2 2 1, 0 2 1, 0 H.4 〈2187, 65|67〉 ≥ 3
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9. Conclusions

In this work, we have seen that order and structure of the second 3-class group M = Gal(F2
3(k)/k)

of a cyclic cubic number field k with conductor c = pqr divisible by three prime(power)s p, q, r and
elementary bicyclic 3-class group Cl3(k) ' (3, 3) depends on arithmetical invariants of other cyclic
cubic auxiliary fields, associated with k. The field k is component of a quartet (k1, . . . , k4) of
cyclic cubic fields sharing the common conductor c. The graph [p, q, r]3 which is combined by the

cubic residue symbols
(
p
q

)
3
,
(
q
p

)
3
,
(
p
r

)
3
,
(
r
p

)
3
,
(
q
r

)
3
,
(
r
q

)
3

decides whether one, or two, or no,

component(s) of the quartet have a 3-class group of rank %(kµ) = 3, and accordingly the conductor
c = pqr is called of Category I, or II, or III. For Category I, the order of the 3-class group of the
unique component with %(kµ0

) = 3 is crucial. For Category II, the orders of both 3-class groups
of the two components with %(kµ1) = %(kµ2) = 3 exert an impact. For Category III, the behavior
is uniform with abelian M ' (3, 3), if [p, q, r]3 does not contain mutual cubic residues (Graphs
1–4), otherwise there is exactly one pair p ↔ q of mutual cubic residues (Graphs 5–9), and the

auxiliary fields with decisive 3-class groups are the two subfields kpq and k̃pq of the absolute genus
field k∗ of k, having the partial conductor pq. In each case, the principal factors (norms of
ambiguous principal ideals) determine the fine structure in form of uniform or non-uniform second
3-class groups M = Gal(F2

3(kµ)/kµ). Explicit numerical investigations indicate that there is no
upper bound for the orders of the 3-class groups Cl3(kµ0

), respectively Cl3(kµ1
) and Cl3(kµ2

),

respectively Cl3(kpq) and Cl3(k̃pq). In the regular situation, these orders are 27, respectively 9, in
the singular situation, they are 81, respectively 27, but in the super-singular situation, they are
at least 243, respectively 27, and the orders may increase unboundedly. Concrete numerical
examples are known with orders up to 729.

Bicyclic bicubic fields Bj , j = 1, . . . , 10, constitute the capitulation targets of the cyclic cubic
fields kµ, µ = 1, . . . , 4. The introduction of important new concepts, the minimal and maximal
capitulation type (mTKT), κ0 and κ∞, permitted recognition of common patterns for several
Graphs, partially in distinct Categories.

The four Graphs II.1, II.2, III.7, III.9 share the same ordered sequence of TKTs, κ0 ∼ (2111) <
(2110) < (2100) < (2000) ∼ κ∞, called H.4, d.19, b.10, a.3∗, although the proofs and details
are quite different. In terms of splitting prime ideals qOBj = Q1Q2Q3, rOB` = R1R2R3, all
these TKTs contain a crucial transposition, due to elementary tricyclic 3-class groups Cl3(Bj) =
〈[Q1, ][Q2, ][Q3]〉, Cl3(B`) = 〈[R1, ][R2, ][R3]〉, and twisted capitulation kernels ker(TBj/kµ) = 〈[r]〉,
ker(TB`/kµ) = 〈[q]〉, which restricts the group M to descendants of 〈243, 3〉 (except 〈81, 7〉, where
a total transfer kernel hides the transposition).

Similarly, the two graphs I.1, I.2 admit another characteristic ordered sequence of TKTs, κ0 ∼
(4231) < (0231) < (0200), (0001) < (0000) ∼ κ∞, called G.16, c.21, a.2, a.3, a.1, with two fixed
points, which restrict the group M to descendants of 〈243, 8〉 (except 〈81, 8〉, 〈81, 10〉, 〈243, 25〉,
〈243, 27〉, where total transfer kernels partially or completely hide the fixed points).

A remarkable outsider is Graph III.8 with a veritable wealth of exotic capitulation types, but
restricted to the unusual maximal TKT κ∞ ∼ (2100), b.10, forced by mandatory transposition.

Due to the lack of cubic residue conditions between the prime divisors of the conductor c = pqr,
two Graphs I.1, III.5 admit the absolute maximum of all TKTs κ = (0000) (non-abelian!).

It might be worth one’s while to point out that a glance at α2 in Tables 2 and 3 reveals that
the commutator subgroup of all encountered second 3-class groups M, respectively 3-class tower
groups G, has order #(M′) ≥ 9, respectively #(G′) ≥ 9, which means that the class number of
the Hilbert 3-class field F1

3(k) is divisible by 9, for all cyclic cubic fields k, with the exception of
t = 1, the regular cases for t = 2, and the Graphs 1, . . . , 4 of Category III for t = 3.

For Category I and II, we expect a rather rigid impact of the groups M = Gal(F2
3(kµ)/kµ)

for Cl3(kµ) ' (3, 3) on the groups Gal(F2
3(kν)/kν) for Cl3(kν) ' (3, 3, 3), as suggested by the

numerous tables in [20]. This research line will be pursued further in a forthcoming paper.
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[25] O. Taussky, Über eine Verschärfung des Hauptidealsatzes für algebraische Zahlkörper, J. Reine Angew. Math.

168 (1932), 193–210.

[26] O. Taussky-Todd, Arnold Scholz zum Gedächtnis, Math. Nachrichten 7 (1952), 379–386.
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