Our Mission:
to advance Austrian Science
to the Forefront of International Research
and to stabilize this status
|
Pure Quintic Fields 3
Previous Page
§ 7. DPF types of pure quintic fields.
We define thirteen possible differential principal factorization types
of pure quintic number fields L = Q(D1/5),
according to the generators of the group NormN|kUN
as the primary invariant
and the triplet (a,i,r) consisting of
the order a = #Pa of the group of absolute DPF of L|Q,
the index i = (Pi:Pa) in the group of intermediate DPF of M|k+, and
the index r = (Pr:Pi) in the group of relative DPF of N|k,
as the secondary invariant
(similar to but not identical with our definitions in [Ma2]).
The connection between the various quantities is given by the chain of equations
a * i * r = #Pr = (PNGal(N|k):Pk) =
(EN|k:UN1 - σ) =
5 (Uk:NormN|kUN).
Note that the unit index
(UN:U0)
does not enter the definition of the DPF types.
NormN|kUN |
(Uk:NormN|kUN) |
(PNGal(N|k):Pk) |
a |
i |
r |
DPF type |
<-1,η5> |
25 |
125 |
5 |
1 |
25 |
α1 |
<-1,η5> |
25 |
125 |
5 |
5 |
5 |
α2 |
<-1,η5> |
25 |
125 |
5 |
25 |
1 |
α3 |
<-1,η5> |
25 |
125 |
25 |
1 |
5 |
β1 |
<-1,η5> |
25 |
125 |
25 |
5 |
1 |
β2 |
<-1,η5> |
25 |
125 |
125 |
1 |
1 |
γ |
<-1,η> |
5 |
25 |
5 |
1 |
5 |
δ1 |
<-1,η> |
5 |
25 |
5 |
5 |
1 |
δ2 |
<-1,η> |
5 |
25 |
25 |
1 |
1 |
ε |
<-1,ζ,η5> |
5 |
25 |
5 |
1 |
5 |
ζ1 |
<-1,ζ,η5> |
5 |
25 |
5 |
5 |
1 |
ζ2 |
<-1,ζ,η5> |
5 |
25 |
25 |
1 |
1 |
η |
<-1,ζ,η> |
1 |
5 |
5 |
1 |
1 |
θ |
§ 8. Computational results.
With the aid of PARI/GP and MAGMA we have determined the DPF type
and other invariants of the 90 pure quintic number fields L = Q(D1/5)
with normalized radicands D = q1e1 … qses
(minimal among the powers Dn, 1 ≤ n ≤ 4, with corresponding ejs reduced mod 5)
in the range 2 ≤ D ≤ 110 (date of completion: Jan 11th, 2014).
Prime factors are given for composite D only
(qj ≡ + 1 (mod 5) in red,
qj ≡ - 1 (mod 5) in magenta,
qj ≡ ± 7 (mod 25) in green).
The first kind of fields is refined by distinguishing 5|D (kind Ia) and (5,D) = 1 (kind Ib).
The exponent of the power in the unit index (UN:U0) = 5e
is denoted by e.
The unit norm index (Uk:NormN|kUN) is abbreviated by u.
The symbol Cl briefly denotes the 5-class group Cl5 of a number field.
An asterisk (*) denotes the smallest radicand with given type and 5-class groups.
No. |
D |
factors |
kind |
Cl(L) |
Cl(M) |
Cl(N) |
e |
u |
DPF type |
* |
1 |
2 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
* |
2 |
3 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
3 |
5 |
|
Ia |
1 |
1 |
1 |
5 |
1 |
θ |
* |
4 |
6 |
2,3 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
* |
5 |
7 |
|
II |
1 |
1 |
1 |
5 |
1 |
θ |
6 |
10 |
2,5 |
Ia |
1 |
1 |
1 |
5 |
5 |
ε |
7 |
11 |
|
Ib |
(5) |
(5) |
(5,5) |
3 |
25 |
α2 |
* |
8 |
12 |
3,22 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
9 |
13 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
10 |
14 |
2,7 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
11 |
15 |
3,5 |
Ia |
1 |
1 |
1 |
5 |
5 |
ε |
12 |
17 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
13 |
18 |
2,32 |
II |
1 |
1 |
1 |
5 |
5 |
ε |
14 |
19 |
|
Ib |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
* |
15 |
20 |
5,22 |
Ia |
1 |
1 |
1 |
5 |
5 |
ε |
16 |
21 |
3,7 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
17 |
22 |
2,11 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
* |
18 |
23 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
19 |
26 |
2,13 |
II |
1 |
1 |
1 |
5 |
5 |
ε |
20 |
28 |
7,22 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
21 |
29 |
|
Ib |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
22 |
30 |
2,3,5 |
Ia |
1 |
1 |
(5) |
6 |
25 |
γ |
23 |
31 |
|
Ib |
(5,5) |
(5,5,5) |
(5,5,5,5,5) |
2 |
25 |
α1 |
* |
24 |
33 |
3,11 |
Ib |
(5,5) |
(5,5) |
(5,5,5,5) |
1 |
25 |
α2 |
* |
25 |
34 |
2,17 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
26 |
35 |
5,7 |
Ia |
1 |
1 |
(5) |
6 |
5 |
η |
* |
27 |
37 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
28 |
38 |
2,19 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
29 |
39 |
3,13 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
30 |
40 |
5,23 |
Ia |
1 |
1 |
1 |
5 |
5 |
ε |
31 |
41 |
|
Ib |
(5) |
(5) |
(5,5) |
3 |
25 |
α2 |
32 |
42 |
2,3,7 |
Ib |
(5) |
(5,5) |
(5,5,5,5,5) |
6 |
25 |
γ |
* |
33 |
43 |
|
II |
1 |
1 |
1 |
5 |
1 |
θ |
34 |
44 |
11,22 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
35 |
45 |
5,32 |
Ia |
1 |
1 |
1 |
5 |
5 |
ε |
36 |
46 |
2,23 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
37 |
47 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
38 |
48 |
3,24 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
39 |
51 |
3,17 |
II |
1 |
1 |
1 |
5 |
5 |
ε |
40 |
52 |
13,22 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
41 |
53 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
42 |
55 |
5,11 |
Ia |
(5) |
(5) |
(5,5) |
3 |
25 |
α2 |
43 |
56 |
7,23 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
44 |
57 |
3,19 |
II |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
45 |
58 |
2,29 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
46 |
59 |
|
Ib |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
47 |
60 |
3,5,22 |
Ia |
1 |
1 |
(5) |
6 |
25 |
γ |
48 |
61 |
|
Ib |
(5) |
(5) |
(5,5) |
3 |
25 |
α2 |
49 |
62 |
2,31 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
50 |
63 |
7,32 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
51 |
65 |
5,13 |
Ia |
1 |
1 |
1 |
5 |
5 |
ε |
52 |
66 |
2,3,11 |
Ib |
(5) |
(5,5) |
(5,5,5,5,5) |
6 |
25 |
γ |
53 |
67 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
54 |
68 |
17,22 |
II |
1 |
1 |
1 |
5 |
5 |
ε |
55 |
69 |
3,23 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
56 |
70 |
2,5,7 |
Ia |
1 |
1 |
(5) |
6 |
25 |
γ |
57 |
71 |
|
Ib |
(5) |
(5) |
(5,5) |
3 |
25 |
α2 |
58 |
73 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
59 |
74 |
2,37 |
II |
1 |
1 |
1 |
5 |
5 |
ε |
60 |
75 |
3,52 |
Ia |
1 |
1 |
1 |
5 |
5 |
ε |
61 |
76 |
19,22 |
II |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
62 |
77 |
7,11 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
63 |
78 |
2,3,13 |
Ib |
(5) |
(5,5) |
(5,5,5,5,5) |
6 |
25 |
γ |
64 |
79 |
|
Ib |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
65 |
80 |
5,24 |
Ia |
1 |
1 |
1 |
5 |
5 |
ε |
66 |
82 |
2,41 |
II |
(5) |
(5) |
(5,5) |
3 |
25 |
α2 |
67 |
83 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
68 |
84 |
3,7,22 |
Ib |
(5) |
(5,5) |
(5,5,5,5,5) |
6 |
25 |
γ |
69 |
85 |
5,17 |
Ia |
1 |
1 |
1 |
5 |
5 |
ε |
70 |
86 |
2,43 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
71 |
87 |
3,29 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
72 |
88 |
11,23 |
Ib |
(5,5) |
(5,5) |
(5,5,5,5) |
1 |
25 |
α2 |
73 |
89 |
|
Ib |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
74 |
90 |
2,5,32 |
Ia |
1 |
1 |
(5) |
6 |
25 |
γ |
75 |
91 |
7,13 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
76 |
92 |
23,22 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
77 |
93 |
3,31 |
II |
(5) |
(5) |
(5,5) |
3 |
25 |
α2 |
78 |
94 |
2,47 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
79 |
95 |
5,19 |
Ia |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
80 |
97 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
81 |
99 |
11,32 |
II |
(5) |
(5) |
(5,5) |
3 |
25 |
α2 |
82 |
101 |
|
II |
(5) |
(5,5) |
(5,5,5,5) |
5 |
5 |
ζ1 |
* |
83 |
102 |
2,3,17 |
Ib |
(5) |
(5,5) |
(5,5,5,5,5) |
6 |
25 |
γ |
84 |
103 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
85 |
104 |
13,23 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
86 |
105 |
3,5,7 |
Ia |
1 |
1 |
(5) |
6 |
25 |
γ |
87 |
106 |
2,53 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
88 |
107 |
|
II |
1 |
1 |
1 |
5 |
1 |
θ |
89 |
109 |
|
Ib |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
90 |
110 |
2,5,11 |
Ia |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
On Jan 13th, 2014, we additionally determined the DPF type
and other invariants of the 35 pure quintic number fields L = Q(D1/5)
with normalized radicands in the range 111 ≤ D ≤ 150.
No. |
D |
factors |
kind |
Cl(L) |
Cl(M) |
Cl(N) |
e |
u |
DPF type |
* |
91 |
111 |
3,37 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
92 |
112 |
7,24 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
93 |
113 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
94 |
114 |
2,3,19 |
Ib |
(5) |
(5,5) |
(5,5,5,5,5) |
6 |
25 |
γ |
95 |
115 |
5,23 |
Ia |
1 |
1 |
1 |
5 |
5 |
ε |
96 |
116 |
29,22 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
97 |
117 |
13,32 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
98 |
118 |
2,59 |
II |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
99 |
119 |
7,17 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
100 |
120 |
3,5,23 |
Ia |
1 |
1 |
(5) |
6 |
25 |
γ |
101 |
122 |
2,61 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
102 |
123 |
3,41 |
Ib |
(5,5) |
(5,5,5) |
(5,5,5,5,5,5) |
3 |
25 |
α2 |
* |
103 |
124 |
31,22 |
II |
(5) |
(5) |
(5,5) |
3 |
25 |
α2 |
104 |
126 |
2,7,32 |
II |
1 |
1 |
(5) |
6 |
25 |
γ |
105 |
127 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
106 |
129 |
3,43 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
107 |
130 |
2,5,13 |
Ia |
1 |
1 |
(5) |
6 |
25 |
γ |
108 |
131 |
|
Ib |
(5,5) |
(5,5) |
(5,5,5,5) |
1 |
25 |
α2 |
109 |
132 |
3,11,22 |
II |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
110 |
133 |
7,19 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
111 |
134 |
2,67 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
112 |
136 |
17,23 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
113 |
137 |
|
Ib |
1 |
1 |
1 |
5 |
5 |
ε |
114 |
138 |
2,3,23 |
Ib |
(5) |
(5,5) |
(5,5,5,5,5) |
6 |
25 |
γ |
115 |
139 |
|
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
116 |
140 |
5,7,22 |
Ia |
(5) |
(5,5) |
(5,5,5,5) |
5 |
5 |
ε |
* |
117 |
141 |
3,47 |
Ib |
(5) |
(5,5) |
(5,5,5,5) |
5 |
5 |
ε |
118 |
142 |
2,71 |
Ib |
(5) |
(5) |
(5,5,5) |
4 |
25 |
β2 |
119 |
143 |
11,13 |
II |
(5) |
(5) |
(5,5) |
3 |
25 |
α2 |
120 |
145 |
5,29 |
Ia |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
121 |
146 |
2,73 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
122 |
147 |
3,72 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
123 |
148 |
37,22 |
Ib |
1 |
1 |
(5) |
6 |
25 |
γ |
124 |
149 |
|
II |
(5) |
(5) |
(5,5) |
3 |
5 |
δ2 |
125 |
150 |
2,3,52 |
Ia |
1 |
1 |
(5) |
6 |
25 |
γ |
Summarized, we finally obtain the following Statistics of DPF types,
expressed by absolute frequencies and relative frequencies in percent (%).
Arrows indicate monotonic tendencies (↑ … increasing, ↓ … descending).
D ≤ |
tot |
ε |
γ |
α1 |
α2 |
β2 |
δ2 |
θ |
η |
ζ1 |
Cl(N)=1 |
Cl(N)=(5) |
50 |
38 |
14 |
11 |
1 |
3 |
3 |
2 |
3 |
1 |
0 |
17 |
11 |
|
|
37 |
29 |
|
8 |
8 |
5 |
8 |
|
|
44 |
29 |
100 |
81 |
26 |
25 |
1 |
10 |
7 |
8 |
3 |
1 |
0 |
29 |
22 |
|
|
32 |
31 |
|
12 |
9 |
10 |
4 |
|
|
36 |
27 |
150 |
125 |
33 |
45 |
1 |
14 |
14 |
12 |
4 |
1 |
1 |
35 |
39 |
|
|
26↓ |
36↑ |
|
11 |
11↑ |
10 |
3↓ |
|
|
28↓ |
31 |
The missing types have been found by us later in 2018:
type β1 occurs for D = 186 = 2*3*31,
type δ1 occurs for D = 211 (prime),
type α3 occurs for D = 319 = 11*29, and
type ζ2 did not appear until D = 505 = 5*101.
Next Page
|
|
|
Trade, Science, Art and Industry
Principal investigator of the
International Research Project
Towers of p-Class Fields
over Algebraic Number Fields
supported by the Austrian Science Fund (FWF):
P 26008-N25
|