For the 21 pure cubic fields L = Q(R1/3) in the following table we denote by

d ... the discriminant (since d is negative, - d is the absolute value)
R ... the (normalized) radicand (red color emphasizes Daniel's exotic secret)
n ... the quadratic part of the radicand R = mn2 (n < m)
D-Type ... the DEDEKIND type
Norm1,2 ... the 2 smallest norms of generators of ambiguous principal ideals
(since L is exotic, these generators do not occur as lattice minima)
PFT ... the principal factorization type (the asterisk * means: "exotic")
PL ... the period length of lattice minima on the VORONOI-Highway
(it can be viewed as an integer approximation of the regulator)
h ... the number of ideal classes


Exotic Pure Cubic Fields (R < 15000)
Nr. - d R n D-Type Norm1 Norm2 PFT PL Regulator h
1 108 2 1 1B 3 9 BETA* 1 1,35E+00 1
2 5589675 455 1 1B 525 2205 BETA* 63 6,82E+01 9
3 382347 833 7 1B 63 147 BETA* 46 5,41E+01 3
4 780300 850 5 1B 150 153 BETA* 3 6,93E+00 18
5 640332 1078 7 1B 99 294 BETA* 10 1,57E+01 9
6 41181075 1235 1 1B 1425 2925 BETA* 94 1,16E+02 9
7 6134700 1430 1 2 1100 1210 BETA* 50 6,13E+01 9
8 552123 1573 11 1B 99 363 BETA* 15 2,20E+01 6
9 401664123 3857 1 1B 4263 8379 BETA* 22 2,54E+01 153
10 3837483 4901 13 1B 117 507 BETA* 13 2,69E+01 24
11 991864467 6061 1 1B 10527 20691 BETA* 972 1,11E+03 9
12 3776652 6358 17 1B 153 867 BETA* 37 4,24E+01 9
13 22358700 6370 7 1B 1092 1260 BETA* 28 3,14E+01 27
14 1857341772 8294 1 1B 11154 44109 BETA* 71 8,66E+01 108
15 7498683 8959 17 1B 153 867 BETA* 205 2,33E+02 3
16 21967308 9922 11 1B 369 726 BETA* 3 8,60E+00 81
17 859468428 11284 2 1B 9114 11466 BETA* 70 8,27E+01 54
18 3966803307 12121 1 1B 19941 80631 BETA* 1471 1,67E+03 9
19 481814787 12673 1 2 8303 10051 BETA* 700 8,40E+02 6
20 4436130348 12818 1 1B 14703 51714 BETA* 631 6,96E+02 27
21 16384707 14801 19 1B 171 1083 BETA* 101 1,15E+02 6