For the 21 pure cubic fields L = Q(R1/3) in the following table we denote by
d ... the discriminant (since d is negative, - d is the absolute value)
R ... the (normalized) radicand (red color emphasizes Daniel's exotic secret)
n ... the quadratic part of the radicand R = mn2 (n < m)
D-Type ... the DEDEKIND type
Norm1,2 ... the 2 smallest norms of generators of ambiguous principal ideals
(since L is exotic, these generators do not occur as lattice minima)
PFT ... the principal factorization type (the asterisk * means: "exotic")
PL ... the period length of lattice minima on the VORONOI-Highway
(it can be viewed as an integer approximation of the regulator)
h ... the number of ideal classes
| Nr. | - d | R | n | D-Type | Norm1 | Norm2 | PFT | PL | Regulator | h |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 108 | 2 | 1 | 1B | 3 | 9 | BETA* | 1 | 1,35E+00 | 1 |
| 2 | 5589675 | 455 | 1 | 1B | 525 | 2205 | BETA* | 63 | 6,82E+01 | 9 |
| 3 | 382347 | 833 | 7 | 1B | 63 | 147 | BETA* | 46 | 5,41E+01 | 3 |
| 4 | 780300 | 850 | 5 | 1B | 150 | 153 | BETA* | 3 | 6,93E+00 | 18 |
| 5 | 640332 | 1078 | 7 | 1B | 99 | 294 | BETA* | 10 | 1,57E+01 | 9 |
| 6 | 41181075 | 1235 | 1 | 1B | 1425 | 2925 | BETA* | 94 | 1,16E+02 | 9 |
| 7 | 6134700 | 1430 | 1 | 2 | 1100 | 1210 | BETA* | 50 | 6,13E+01 | 9 |
| 8 | 552123 | 1573 | 11 | 1B | 99 | 363 | BETA* | 15 | 2,20E+01 | 6 |
| 9 | 401664123 | 3857 | 1 | 1B | 4263 | 8379 | BETA* | 22 | 2,54E+01 | 153 |
| 10 | 3837483 | 4901 | 13 | 1B | 117 | 507 | BETA* | 13 | 2,69E+01 | 24 |
| 11 | 991864467 | 6061 | 1 | 1B | 10527 | 20691 | BETA* | 972 | 1,11E+03 | 9 |
| 12 | 3776652 | 6358 | 17 | 1B | 153 | 867 | BETA* | 37 | 4,24E+01 | 9 |
| 13 | 22358700 | 6370 | 7 | 1B | 1092 | 1260 | BETA* | 28 | 3,14E+01 | 27 |
| 14 | 1857341772 | 8294 | 1 | 1B | 11154 | 44109 | BETA* | 71 | 8,66E+01 | 108 |
| 15 | 7498683 | 8959 | 17 | 1B | 153 | 867 | BETA* | 205 | 2,33E+02 | 3 |
| 16 | 21967308 | 9922 | 11 | 1B | 369 | 726 | BETA* | 3 | 8,60E+00 | 81 |
| 17 | 859468428 | 11284 | 2 | 1B | 9114 | 11466 | BETA* | 70 | 8,27E+01 | 54 |
| 18 | 3966803307 | 12121 | 1 | 1B | 19941 | 80631 | BETA* | 1471 | 1,67E+03 | 9 |
| 19 | 481814787 | 12673 | 1 | 2 | 8303 | 10051 | BETA* | 700 | 8,40E+02 | 6 |
| 20 | 4436130348 | 12818 | 1 | 1B | 14703 | 51714 | BETA* | 631 | 6,96E+02 | 27 |
| 21 | 16384707 | 14801 | 19 | 1B | 171 | 1083 | BETA* | 101 | 1,15E+02 | 6 |