| * |
| Structures of Micro Objects |
| * |
| Trans Fermium Elements |
| Nuclear Schemata |
| * |
| Term Schema of electron hulls (2002/06/19) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dan (02/06/19):
The term schema of the electron hull in an arbitrary atom is obtained by solving the Schrödinger equation for a sufficiently detailed Coulomb potential. For any electron state, we denote by n ... the principal quantum number (shells K,L,... with n = 1,2,...), l ... the orbital angular momentum (orbitals s,p,... with l = 0,...,n), m ... the magnetic quantum number (m = -l,...,l).
Boldface state numbers denote closed hull shells and are called shell magic numbers.
At Z = 121 the Term Schema becomes irregular, since not only the 8s-orbital but even a part of the 8p-orbital lies lower than the 5g- (a totally new feature), 6f-, and 7d-orbitals. The other part of the 8p-orbital, however, lies above the 9s- and 9p-orbitals. This is the reason why the 8th and 9th period do not show the Seaborg parallel alignment configuration which was characteristic for the 6th (lanthanides) and 7th (actinides) period. |
| <| Back <| |